How essential is a spanning surface?

Thomas Kindred
{"title":"How essential is a spanning surface?","authors":"Thomas Kindred","doi":"arxiv-2408.16948","DOIUrl":null,"url":null,"abstract":"Gabai proved that any plumbing, or Murasugi sum, of $\\pi_1$-essential Seifert\nsurfaces is also $\\pi_1$-essential, and Ozawa extended this result to\nunoriented spanning surfaces. We show that the analogous statement about\ngeometrically essential surfaces is untrue. We then introduce new numerical\ninvariants, the algebraic and geometric essence of a spanning surface $F\\subset\nS^3$, which measure how far $F$ is from being compressible, and we extend\nOzawa's theorem by showing that plumbing respects the algebraic version of this\nnew invariant. We also introduce a ``twisted'' generalization of plumbing and\nuse it to compute essence for many examples, including checkerboard surfaces\nfrom reduced alternating diagrams. Finally, we extend all of these results to\nplumbings and twisted plumbings of spanning surfaces in arbitrary 3-manifolds.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gabai proved that any plumbing, or Murasugi sum, of $\pi_1$-essential Seifert surfaces is also $\pi_1$-essential, and Ozawa extended this result to unoriented spanning surfaces. We show that the analogous statement about geometrically essential surfaces is untrue. We then introduce new numerical invariants, the algebraic and geometric essence of a spanning surface $F\subset S^3$, which measure how far $F$ is from being compressible, and we extend Ozawa's theorem by showing that plumbing respects the algebraic version of this new invariant. We also introduce a ``twisted'' generalization of plumbing and use it to compute essence for many examples, including checkerboard surfaces from reduced alternating diagrams. Finally, we extend all of these results to plumbings and twisted plumbings of spanning surfaces in arbitrary 3-manifolds.
跨接面有多重要?
Gabai证明了任何$\pi_1$-essential Seifertsurfaces的plumbing或Murasugi sum也是$\pi_1$-essential,Ozawa将这一结果扩展到了面向跨曲面。我们证明了关于几何本质曲面的类似说法是不真实的。然后,我们引入了新的数值不变式,即跨曲面 $F (SubsetS^3$)的代数和几何本质,它可以度量 $F 距离可压缩性有多远。我们还引入了plumbing的 "扭曲 "广义,并用它计算了许多例子的本质,包括还原交替图中的棋盘曲面。最后,我们将所有这些结果扩展到任意3-manifolds中跨曲面的垂线和扭曲垂线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信