Arithmeticity and commensurability of links in thickened surfaces

David Futer, Rose Kaplan-Kelly
{"title":"Arithmeticity and commensurability of links in thickened surfaces","authors":"David Futer, Rose Kaplan-Kelly","doi":"arxiv-2409.00490","DOIUrl":null,"url":null,"abstract":"The family of right-angled tiling links consists of links built from regular\n4-valent tilings of constant-curvature surfaces that contain one or two types\nof tiles. The complements of these links admit complete hyperbolic structures\nand contain two totally geodesic checkerboard surfaces that meet at right\nangles. In this paper, we give a complete characterization of which\nright-angled tiling links are arithmetic, and which are pairwise commensurable.\nThe arithmeticity classification exploits symmetry arguments and the\ncombinatorial geometry of Coxeter polyhedra. The commensurability\nclassification relies on identifying the canonical decompositions of the link\ncomplements, in addition to number-theoretic data from invariant trace fields.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The family of right-angled tiling links consists of links built from regular 4-valent tilings of constant-curvature surfaces that contain one or two types of tiles. The complements of these links admit complete hyperbolic structures and contain two totally geodesic checkerboard surfaces that meet at right angles. In this paper, we give a complete characterization of which right-angled tiling links are arithmetic, and which are pairwise commensurable. The arithmeticity classification exploits symmetry arguments and the combinatorial geometry of Coxeter polyhedra. The commensurability classification relies on identifying the canonical decompositions of the link complements, in addition to number-theoretic data from invariant trace fields.
加厚表面中链接的算术性和可通约性
直角平铺链接系由包含一种或两种平铺的恒曲率曲面的规则4价平铺所建立的链接组成。这些链接的补集承认完整的双曲结构,并包含两个完全大地测量的棋盘曲面,它们在直角处相遇。在本文中,我们给出了哪些直角平铺链接是可算术的,哪些是成对可通约的。可通约性分类除了利用不变迹域中的数论数据外,还依赖于识别链接复数的规范分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信