Spectral invariants and equivariant monopole Floer homology for rational homology three-spheres

Minh Lam Nguyen
{"title":"Spectral invariants and equivariant monopole Floer homology for rational homology three-spheres","authors":"Minh Lam Nguyen","doi":"arxiv-2409.04954","DOIUrl":null,"url":null,"abstract":"In this paper, we study a model for $S^1$-equivariant monopole Floer homology\nfor rational homology three-spheres via a homological device called\n$\\mathcal{S}$-complex. Using the Chern-Simons-Dirac functional, we define an\n$\\mathbf{R}$-filtration on the (equivariant) complex of monopole Floer homology\n$HM$. This $\\mathbf{R}$-filtration fits $HM$ into a persistent homology theory,\nfrom which one can define a numerical quantity called the spectral invariant\n$\\rho$. The spectral invariant $\\rho$ is tied with the geometry of the\nunderlying manifold. The main result of the papers shows that $\\rho$ provides\nan obstruction to the existence of positive scalar curvature metric on a ribbon\nhomology cobordism.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a model for $S^1$-equivariant monopole Floer homology for rational homology three-spheres via a homological device called $\mathcal{S}$-complex. Using the Chern-Simons-Dirac functional, we define an $\mathbf{R}$-filtration on the (equivariant) complex of monopole Floer homology $HM$. This $\mathbf{R}$-filtration fits $HM$ into a persistent homology theory, from which one can define a numerical quantity called the spectral invariant $\rho$. The spectral invariant $\rho$ is tied with the geometry of the underlying manifold. The main result of the papers shows that $\rho$ provides an obstruction to the existence of positive scalar curvature metric on a ribbon homology cobordism.
有理同调三球体的谱不变式和等变单极弗洛尔同调
在本文中,我们通过一个叫做$\mathcal{S}$-complex的同调装置,研究了有理同调三球体的$S^1$-等变单极弗洛尔同调模型。利用切尔恩-西蒙斯-狄拉克函数,我们定义了单极弗洛尔同调(等变)复数$HM$上的($mathbf{R}$-过滤)。这个 $m\mathbf{R}$ 过滤将 $HM$ 合为一个持久同调理论,由此我们可以定义一个称为谱不变量 $\rho$ 的数值量。谱不变量$\rho$与底层流形的几何关系密切。论文的主要结果表明,$\rho$ 为带状同调上正标量曲率度量的存在提供了障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信