Siegel-Veech Constants for Cyclic Covers of Generic Translation Surfaces

David Aulicino, Aaron Calderon, Carlos Matheus, Nick Salter, Martin Schmoll
{"title":"Siegel-Veech Constants for Cyclic Covers of Generic Translation Surfaces","authors":"David Aulicino, Aaron Calderon, Carlos Matheus, Nick Salter, Martin Schmoll","doi":"arxiv-2409.06600","DOIUrl":null,"url":null,"abstract":"We compute the asymptotic number of cylinders, weighted by their area to any\nnon-negative power, on any cyclic branched cover of any generic translation\nsurface in any stratum. Our formulas depend only on topological invariants of\nthe cover and number-theoretic properties of the degree: in particular, the\nratio of the related Siegel-Veech constants for the locus of covers and for the\nbase stratum component is independent of the number of branch values. One\nsurprising corollary is that this ratio for $area^3$ Siegel-Veech constants is\nalways equal to the reciprocal of the the degree of the cover. A key ingredient\nis a classification of the connected components of certain loci of cyclic\nbranched covers.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the asymptotic number of cylinders, weighted by their area to any non-negative power, on any cyclic branched cover of any generic translation surface in any stratum. Our formulas depend only on topological invariants of the cover and number-theoretic properties of the degree: in particular, the ratio of the related Siegel-Veech constants for the locus of covers and for the base stratum component is independent of the number of branch values. One surprising corollary is that this ratio for $area^3$ Siegel-Veech constants is always equal to the reciprocal of the the degree of the cover. A key ingredient is a classification of the connected components of certain loci of cyclic branched covers.
通用平移面循环盖的西格尔-维奇常数
我们计算了任意层中任意一般平移面的任意环状分支盖上圆柱体的渐近数量,这些圆柱体按其面积加权到任意非负幂。我们的公式只依赖于盖的拓扑不变式和度的数论性质:特别是,盖的位点和底层分量的相关西格尔-维奇常数的比值与分支值的数量无关。一个令人惊奇的推论是,对于 $area^3$ 西格尔-维奇常数来说,这个比率总是等于盖度的倒数。其中的一个关键要素是对某些环支盖的位置的连通成分的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信