Hongyong Cui, Rodiak N. Figueroa-López, José A. Langa, Marcelo J. D. Nascimento
{"title":"Forward Attraction of Nonautonomous Dynamical Systems and Applications to Navier–Stokes Equations","authors":"Hongyong Cui, Rodiak N. Figueroa-López, José A. Langa, Marcelo J. D. Nascimento","doi":"10.1137/23m1626384","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2407-2443, September 2024. <br/> Abstract. In this paper we studied the forward dynamics of nonautonomous dynamical systems in terms of forward attractors. We first reviewed the well-known uniform attractor theory, and then by weakening the uniformity of attraction we introduced semiuniform forward attractors and minimal (nonuniform) forward attractors. With these semiuniform attractors, a characterization of the structure of uniform attractors was given: a uniform attractor is composed of two semiuniform attractors and bounded complete trajectories connecting them. As a consequence, the nature of the forward attraction of a dissipative nonautonomous dynamical system was then revealed: the vector field in the distant future of the system determines the (nonuniform) forward asymptotic behavior. A criterion for certain semiuniform attractors to have finite fractal dimension was given and the finite dimensionality of uniform attractors was discussed. Forward attracting time-dependent sets were studied also. A sufficient condition and a necessary condition for a time-dependent set to be forward attracting were given with illustrative counterexamples. Forward attractors of a Navier–Stokes equation with asymptotically vanishing viscosity (with an Euler equation as the limit equation) and with time-dependent forcing were studied as applications.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"5 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1626384","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2407-2443, September 2024. Abstract. In this paper we studied the forward dynamics of nonautonomous dynamical systems in terms of forward attractors. We first reviewed the well-known uniform attractor theory, and then by weakening the uniformity of attraction we introduced semiuniform forward attractors and minimal (nonuniform) forward attractors. With these semiuniform attractors, a characterization of the structure of uniform attractors was given: a uniform attractor is composed of two semiuniform attractors and bounded complete trajectories connecting them. As a consequence, the nature of the forward attraction of a dissipative nonautonomous dynamical system was then revealed: the vector field in the distant future of the system determines the (nonuniform) forward asymptotic behavior. A criterion for certain semiuniform attractors to have finite fractal dimension was given and the finite dimensionality of uniform attractors was discussed. Forward attracting time-dependent sets were studied also. A sufficient condition and a necessary condition for a time-dependent set to be forward attracting were given with illustrative counterexamples. Forward attractors of a Navier–Stokes equation with asymptotically vanishing viscosity (with an Euler equation as the limit equation) and with time-dependent forcing were studied as applications.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.