{"title":"Subnetwork Enumeration Algorithms for Multilayer Networks","authors":"Tarmo Nurmi;Mikko Kivelä","doi":"10.1109/TNSE.2024.3447893","DOIUrl":null,"url":null,"abstract":"To understand the structure of a network, it can be useful to break it down into its constituent pieces. This is the approach taken in a multitude of successful network analysis methods, such as motif analysis. These methods require one to enumerate or sample small connected subgraphs of a network. Efficient algorithms exists for both enumeration and uniform sampling of subgraphs, and here we generalize the \n<sc>esu</small>\n algorithm for a very general notion of multilayer networks. We show that multilayer network subnetwork enumeration introduces nontrivial complications to the existing algorithm, and present two different generalized algorithms that preserve the desired features of unbiased sampling and scalable, communication-free parallelization. In addition, we introduce a straightforward aggregation-disaggregation-based enumeration algorithm that leverages existing subgraph enumeration algorithms. We evaluate these algorithms in synthetic networks and with real-world data, and show that none of the algorithms is strictly more efficient but rather the choice depends on the features of the data. Having a general algorithm for finding subnetworks makes advanced multilayer network analysis possible, and enables researchers to apply a variety of methods to previously difficult-to-handle multilayer networks in a variety of domains and across many different types of multilayer networks.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"5803-5817"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663535","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663535/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To understand the structure of a network, it can be useful to break it down into its constituent pieces. This is the approach taken in a multitude of successful network analysis methods, such as motif analysis. These methods require one to enumerate or sample small connected subgraphs of a network. Efficient algorithms exists for both enumeration and uniform sampling of subgraphs, and here we generalize the
esu
algorithm for a very general notion of multilayer networks. We show that multilayer network subnetwork enumeration introduces nontrivial complications to the existing algorithm, and present two different generalized algorithms that preserve the desired features of unbiased sampling and scalable, communication-free parallelization. In addition, we introduce a straightforward aggregation-disaggregation-based enumeration algorithm that leverages existing subgraph enumeration algorithms. We evaluate these algorithms in synthetic networks and with real-world data, and show that none of the algorithms is strictly more efficient but rather the choice depends on the features of the data. Having a general algorithm for finding subnetworks makes advanced multilayer network analysis possible, and enables researchers to apply a variety of methods to previously difficult-to-handle multilayer networks in a variety of domains and across many different types of multilayer networks.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.