{"title":"The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass","authors":"Morris Brooks, Robert Seiringer","doi":"10.1007/s10240-024-00150-0","DOIUrl":null,"url":null,"abstract":"<p>We study the Fröhlich polaron model in <span>\\(\\mathbf {R}^{3}\\)</span>, and prove a lower bound on its ground state energy as a function of the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper bound proved earlier (Mitrouskas et al. in Forum Math. Sigma 11:1–52, 2023), it shows that the energy is approximately parabolic below the continuum threshold, and that the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the celebrated Landau–Pekar formula. In particular, it diverges as <span>\\(\\alpha ^{4}\\)</span> for large coupling constant <span>\\(\\alpha \\)</span>.</p>","PeriodicalId":516319,"journal":{"name":"Publications mathématiques de l'IHÉS","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications mathématiques de l'IHÉS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10240-024-00150-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the Fröhlich polaron model in \(\mathbf {R}^{3}\), and prove a lower bound on its ground state energy as a function of the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper bound proved earlier (Mitrouskas et al. in Forum Math. Sigma 11:1–52, 2023), it shows that the energy is approximately parabolic below the continuum threshold, and that the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the celebrated Landau–Pekar formula. In particular, it diverges as \(\alpha ^{4}\) for large coupling constant \(\alpha \).