Homeostasis Patterns

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
William Duncan, Fernando Antoneli, Janet Best, Martin Golubitsky, Jiaxin Jin, H. Frederik Nijhout, Mike Reed, Ian Stewart
{"title":"Homeostasis Patterns","authors":"William Duncan, Fernando Antoneli, Janet Best, Martin Golubitsky, Jiaxin Jin, H. Frederik Nijhout, Mike Reed, Ian Stewart","doi":"10.1137/23m158807x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2262-2292, September 2024. <br/> Abstract.Homeostasis is a regulatory mechanism that keeps a specific variable close to a set value as other variables fluctuate. The notion of homeostasis can be rigorously formulated when the model of interest is represented as an input-output network, with distinguished input and output nodes, and the dynamics of the network determines the corresponding input-output function of the system. In this context, homeostasis can be defined as an “infinitesimal” notion, namely, the derivative of the input-output function is zero at an isolated point. Combining this approach with graph-theoretic ideas from combinatorial matrix theory provides a systematic framework for calculating homeostasis points in models and classifying the different homeostasis types in input-output networks. In this paper we extend this theory by introducing the notion of a homeostasis pattern, defined as a set of nodes, in addition to the output node, that are simultaneously infinitesimally homeostatic. We prove that each homeostasis type leads to a distinct homeostasis pattern. Moreover, we describe all homeostasis patterns supported by a given input-output network in terms of a combinatorial structure associated to the input-output network. We call this structure the homeostasis pattern network.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"8 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m158807x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2262-2292, September 2024.
Abstract.Homeostasis is a regulatory mechanism that keeps a specific variable close to a set value as other variables fluctuate. The notion of homeostasis can be rigorously formulated when the model of interest is represented as an input-output network, with distinguished input and output nodes, and the dynamics of the network determines the corresponding input-output function of the system. In this context, homeostasis can be defined as an “infinitesimal” notion, namely, the derivative of the input-output function is zero at an isolated point. Combining this approach with graph-theoretic ideas from combinatorial matrix theory provides a systematic framework for calculating homeostasis points in models and classifying the different homeostasis types in input-output networks. In this paper we extend this theory by introducing the notion of a homeostasis pattern, defined as a set of nodes, in addition to the output node, that are simultaneously infinitesimally homeostatic. We prove that each homeostasis type leads to a distinct homeostasis pattern. Moreover, we describe all homeostasis patterns supported by a given input-output network in terms of a combinatorial structure associated to the input-output network. We call this structure the homeostasis pattern network.
平衡模式
SIAM 应用动力系统期刊》,第 23 卷第 3 期,第 2262-2292 页,2024 年 9 月。 摘要:平衡是一种调节机制,它能在其他变量波动时保持特定变量接近设定值。如果将相关模型表示为一个输入输出网络,并区分输入和输出节点,且该网络的动态变化决定了系统相应的输入输出函数,那么就可以严格地表述平衡的概念。在这种情况下,平衡可定义为 "无穷小 "概念,即输入-输出函数的导数在孤立点为零。将这一方法与组合矩阵理论中的图论思想相结合,可为计算模型中的同调点和分类输入-输出网络中的不同同调类型提供一个系统框架。在本文中,我们对这一理论进行了扩展,引入了同态模式的概念,将其定义为除输出节点外,同时具有无限同态性的一组节点。我们证明,每种同态类型都会导致一种不同的同态模式。此外,我们还通过与输入输出网络相关联的组合结构来描述特定输入输出网络支持的所有同态模式。我们称这种结构为平衡模式网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信