{"title":"On the Extinction of Multiple Shocks in Scalar Viscous Conservation Laws","authors":"Jeanne Lin, Dmitry E. Pelinovsky, Björn de Rijk","doi":"10.1137/24m1640628","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2323-2363, September 2024. <br/> Abstract.We are interested in the dynamics of interfaces, or zeros, of shock waves in general scalar viscous conservation laws with a locally Lipschitz continuous flux function, such as the modular Burgers equation. We prove that all interfaces coalesce within finite time, leaving behind either a single interface or no interface at all. Our proof relies on mass and energy estimates, regularization of the flux function, and an application of the Sturm theorems on the number of zeros of solutions of parabolic problems. Our analysis yields an explicit upper bound on the time of extinction in terms of the initial condition and the flux function. Moreover, in the case of a smooth flux function, we characterize the generic bifurcations arising at a coalescence event with and without the presence of odd symmetry. We identify associated scaling laws describing the local interface dynamics near collision. Finally, we present an extension of these results to the case of antishock waves converging to asymptotic limits of opposite signs. Our analysis is corroborated by numerical simulations of the modular Burgers equation.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"47 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1640628","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2323-2363, September 2024. Abstract.We are interested in the dynamics of interfaces, or zeros, of shock waves in general scalar viscous conservation laws with a locally Lipschitz continuous flux function, such as the modular Burgers equation. We prove that all interfaces coalesce within finite time, leaving behind either a single interface or no interface at all. Our proof relies on mass and energy estimates, regularization of the flux function, and an application of the Sturm theorems on the number of zeros of solutions of parabolic problems. Our analysis yields an explicit upper bound on the time of extinction in terms of the initial condition and the flux function. Moreover, in the case of a smooth flux function, we characterize the generic bifurcations arising at a coalescence event with and without the presence of odd symmetry. We identify associated scaling laws describing the local interface dynamics near collision. Finally, we present an extension of these results to the case of antishock waves converging to asymptotic limits of opposite signs. Our analysis is corroborated by numerical simulations of the modular Burgers equation.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.