Andreas Karathanasopoulos, Chia Chun Lo, Mitra Sovan, Mohamed Osman, Hans‐Jörg von Mettenheim, Slim Skander
{"title":"A multi‐objective optimization metaheuristic hybrid technique for forecasting the electricity consumption of the UAE: A grey wolf approach","authors":"Andreas Karathanasopoulos, Chia Chun Lo, Mitra Sovan, Mohamed Osman, Hans‐Jörg von Mettenheim, Slim Skander","doi":"10.1002/for.3187","DOIUrl":null,"url":null,"abstract":"By implementing a multi‐objective optimization approach in forecasting, we introduce three optimization models grey wolf optimizer, genetic algorithm, and differential evolution algorithm combined with multilayer perceptron neural networks and support vector machines to predict electricity consumption in the UAE. The hybrid models' accuracy and efficiency were evaluated using various forecasting metrics. This study's contributions are threefold: it is the first to employ such a sophisticated hybrid approach, particularly using the recently introduced grey wolf optimizer, it compares optimization techniques with the established Pearson correlation‐based method for dimensionality reduction and it represents one of the most extensive macroeconomic forecasts in the UAE using multi‐objective heuristic hybrid optimization methods. Our findings indicate that the grey wolf optimizer significantly outperforms all other models, followed by the genetic algorithm.","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1002/for.3187","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
By implementing a multi‐objective optimization approach in forecasting, we introduce three optimization models grey wolf optimizer, genetic algorithm, and differential evolution algorithm combined with multilayer perceptron neural networks and support vector machines to predict electricity consumption in the UAE. The hybrid models' accuracy and efficiency were evaluated using various forecasting metrics. This study's contributions are threefold: it is the first to employ such a sophisticated hybrid approach, particularly using the recently introduced grey wolf optimizer, it compares optimization techniques with the established Pearson correlation‐based method for dimensionality reduction and it represents one of the most extensive macroeconomic forecasts in the UAE using multi‐objective heuristic hybrid optimization methods. Our findings indicate that the grey wolf optimizer significantly outperforms all other models, followed by the genetic algorithm.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.