ON A PROBLEM OF PONGSRIIAM ON THE SUM OF DIVISORS

IF 0.6 4区 数学 Q3 MATHEMATICS
RUI-JING WANG
{"title":"ON A PROBLEM OF PONGSRIIAM ON THE SUM OF DIVISORS","authors":"RUI-JING WANG","doi":"10.1017/s0004972724000492","DOIUrl":null,"url":null,"abstract":"<p>For any positive integer <span>n</span>, let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\sigma (n)$</span></span></img></span></span> be the sum of all positive divisors of <span>n</span>. We prove that for every integer <span>k</span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$1\\leq k\\leq 29$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(k,30)=1,$</span></span></img></span></span> <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\sum_{n\\leq K}\\sigma(30n)&gt;\\sum_{n\\leq K}\\sigma(30n+k) \\end{align*} $$</span></span></img></span></p><p>for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$K\\in \\mathbb {N},$</span></span></img></span></span> which gives a positive answer to a problem posed by Pongsriiam [‘Sums of divisors on arithmetic progressions’, <span>Period. Math. Hungar</span>. <span>88</span> (2024), 443–460].</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000492","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any positive integer n, let Abstract Image$\sigma (n)$ be the sum of all positive divisors of n. We prove that for every integer k with Abstract Image$1\leq k\leq 29$ and Abstract Image$(k,30)=1,$ Abstract Image$$ \begin{align*} \sum_{n\leq K}\sigma(30n)>\sum_{n\leq K}\sigma(30n+k) \end{align*} $$

for all Abstract Image$K\in \mathbb {N},$ which gives a positive answer to a problem posed by Pongsriiam [‘Sums of divisors on arithmetic progressions’, Period. Math. Hungar. 88 (2024), 443–460].

关于除数之和的庞氏难题
对于任意正整数 n,让 $\sigma (n)$ 是 n 的所有正除数之和。我们证明,对于每一个整数k,只要有$1\leq k\leq 29$和$(k,30)=1,$$ \begin{align*}。\sum_{n\leq K}\sigma(30n)>\sum_{n\leq K}\sigma(30n+k) \end{align*}$$for all $K\in \mathbb {N}, $ 这给了 Pongsriiam 提出的问题一个肯定的答案['Sums of divisors on arithmetic progressions', Period.Math.匈牙利。88 (2024), 443-460].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信