{"title":"ON A CONJECTURE ON SHIFTED PRIMES WITH LARGE PRIME FACTORS, II","authors":"YUCHEN DING","doi":"10.1017/s0004972724000534","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {P}$</span></span></img></span></span> be the set of primes and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi (x)$</span></span></img></span></span> the number of primes not exceeding <span>x</span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$P^+(n)$</span></span></img></span></span> be the largest prime factor of <span>n</span>, with the convention <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$P^+(1)=1$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$ T_c(x)=\\#\\{p\\le x:p\\in \\mathcal {P},P^+(p-1)\\ge p^c\\}. $</span></span></img></span></span> Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, <span>Acta Math. Sin. (Engl. Ser.)</span> <span>33</span> (2017), 377–382], we show that for any <span>c</span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$8/9\\le c<1$</span></span></img></span></span>, <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\limsup_{x\\rightarrow\\infty}T_c(x)/\\pi(x)\\le 8(1/c-1), \\end{align*} $$</span></span></img></span></p><p>which clearly means that <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_eqnu2.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\limsup_{x\\rightarrow\\infty}T_c(x)/\\pi(x)\\rightarrow 0 \\quad \\text{as } c\\rightarrow 1. \\end{align*} $$</span></span></img></span></p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"75 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000534","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\mathcal {P}$ be the set of primes and $\pi (x)$ the number of primes not exceeding x. Let $P^+(n)$ be the largest prime factor of n, with the convention $P^+(1)=1$, and $ T_c(x)=\#\{p\le x:p\in \mathcal {P},P^+(p-1)\ge p^c\}. $ Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, Acta Math. Sin. (Engl. Ser.)33 (2017), 377–382], we show that for any c with $8/9\le c<1$, $$ \begin{align*} \limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\le 8(1/c-1), \end{align*} $$
which clearly means that $$ \begin{align*} \limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\rightarrow 0 \quad \text{as } c\rightarrow 1. \end{align*} $$
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society