{"title":"ON A CONJECTURE ON SHIFTED PRIMES WITH LARGE PRIME FACTORS, II","authors":"YUCHEN DING","doi":"10.1017/s0004972724000534","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {P}$</span></span></img></span></span> be the set of primes and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi (x)$</span></span></img></span></span> the number of primes not exceeding <span>x</span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$P^+(n)$</span></span></img></span></span> be the largest prime factor of <span>n</span>, with the convention <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$P^+(1)=1$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$ T_c(x)=\\#\\{p\\le x:p\\in \\mathcal {P},P^+(p-1)\\ge p^c\\}. $</span></span></img></span></span> Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, <span>Acta Math. Sin. (Engl. Ser.)</span> <span>33</span> (2017), 377–382], we show that for any <span>c</span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$8/9\\le c<1$</span></span></img></span></span>, <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\limsup_{x\\rightarrow\\infty}T_c(x)/\\pi(x)\\le 8(1/c-1), \\end{align*} $$</span></span></img></span></p><p>which clearly means that <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_eqnu2.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\limsup_{x\\rightarrow\\infty}T_c(x)/\\pi(x)\\rightarrow 0 \\quad \\text{as } c\\rightarrow 1. \\end{align*} $$</span></span></img></span></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\mathcal {P}$ be the set of primes and $\pi (x)$ the number of primes not exceeding x. Let $P^+(n)$ be the largest prime factor of n, with the convention $P^+(1)=1$, and $ T_c(x)=\#\{p\le x:p\in \mathcal {P},P^+(p-1)\ge p^c\}. $ Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, Acta Math. Sin. (Engl. Ser.)33 (2017), 377–382], we show that for any c with $8/9\le c<1$, $$ \begin{align*} \limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\le 8(1/c-1), \end{align*} $$
which clearly means that $$ \begin{align*} \limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\rightarrow 0 \quad \text{as } c\rightarrow 1. \end{align*} $$