ON A CONJECTURE ON SHIFTED PRIMES WITH LARGE PRIME FACTORS, II

Pub Date : 2024-09-13 DOI:10.1017/s0004972724000534
YUCHEN DING
{"title":"ON A CONJECTURE ON SHIFTED PRIMES WITH LARGE PRIME FACTORS, II","authors":"YUCHEN DING","doi":"10.1017/s0004972724000534","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {P}$</span></span></img></span></span> be the set of primes and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi (x)$</span></span></img></span></span> the number of primes not exceeding <span>x</span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$P^+(n)$</span></span></img></span></span> be the largest prime factor of <span>n</span>, with the convention <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$P^+(1)=1$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$ T_c(x)=\\#\\{p\\le x:p\\in \\mathcal {P},P^+(p-1)\\ge p^c\\}. $</span></span></img></span></span> Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, <span>Acta Math. Sin. (Engl. Ser.)</span> <span>33</span> (2017), 377–382], we show that for any <span>c</span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$8/9\\le c&lt;1$</span></span></img></span></span>, <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\limsup_{x\\rightarrow\\infty}T_c(x)/\\pi(x)\\le 8(1/c-1), \\end{align*} $$</span></span></img></span></p><p>which clearly means that <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_eqnu2.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\limsup_{x\\rightarrow\\infty}T_c(x)/\\pi(x)\\rightarrow 0 \\quad \\text{as } c\\rightarrow 1. \\end{align*} $$</span></span></img></span></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image$\mathcal {P}$ be the set of primes and Abstract Image$\pi (x)$ the number of primes not exceeding x. Let Abstract Image$P^+(n)$ be the largest prime factor of n, with the convention Abstract Image$P^+(1)=1$, and Abstract Image$ T_c(x)=\#\{p\le x:p\in \mathcal {P},P^+(p-1)\ge p^c\}. $ Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, Acta Math. Sin. (Engl. Ser.) 33 (2017), 377–382], we show that for any c with Abstract Image$8/9\le c<1$, Abstract Image$$ \begin{align*} \limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\le 8(1/c-1), \end{align*} $$

which clearly means that Abstract Image$$ \begin{align*} \limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\rightarrow 0 \quad \text{as } c\rightarrow 1. \end{align*} $$

分享
查看原文
关于大质因数移位素数的猜想,ii
让 $P^+(n)$ 是 n 的最大素因子,约定为 $P^+(1)=1$,并且 $ T_c(x)=\#{p\le x:p\in \mathcal {P},P^+(p-1)\ge p^c\}.$ 由陈和陈的一个猜想激发['论移位素数的最大素因子', Acta Math.Sin.(Engl. Ser.) 33 (2017), 377-382], 我们证明,对于任意具有 $8/9\le c<1$ 的 c,$$ \begin{align*}\limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\le 8(1/c-1), \end{align*}这显然意味着 $$ (开始{align*}\T_c(x)/\pi(x)\rightarrow 0 \quad \text{as } c\rightarrow 1.\end{align*}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信