MONOGENIC EVEN QUARTIC TRINOMIALS

Pub Date : 2024-09-13 DOI:10.1017/s0004972724000510
LENNY JONES
{"title":"MONOGENIC EVEN QUARTIC TRINOMIALS","authors":"LENNY JONES","doi":"10.1017/s0004972724000510","DOIUrl":null,"url":null,"abstract":"<p>A monic polynomial <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)\\in {\\mathbb Z}[x]$</span></span></img></span></span> of degree <span>N</span> is called <span>monogenic</span> if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> is irreducible over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Q}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\{1,\\theta ,\\theta ^2,\\ldots ,\\theta ^{N-1}\\}$</span></span></img></span></span> is a basis for the ring of integers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Q}(\\theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f(\\theta )=0$</span></span></img></span></span>. We prove that there exist exactly three distinct monogenic trinomials of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$x^4+bx^2+d$</span></span></img></span></span> whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A monic polynomial Abstract Image$f(x)\in {\mathbb Z}[x]$ of degree N is called monogenic if Abstract Image$f(x)$ is irreducible over Abstract Image${\mathbb Q}$ and Abstract Image$\{1,\theta ,\theta ^2,\ldots ,\theta ^{N-1}\}$ is a basis for the ring of integers of Abstract Image${\mathbb Q}(\theta )$, where Abstract Image$f(\theta )=0$. We prove that there exist exactly three distinct monogenic trinomials of the form Abstract Image$x^4+bx^2+d$ whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.

分享
查看原文
单向偶四次方三项式
如果 $f(x)$ 在 ${\mathbb Q}$ 上是不可约的,并且 ${1、\theta ,\theta ^2,\ldots ,\theta ^{N-1}\}$ 是 ${\mathbb Q}(\theta )$ 的整数环的基,其中 $f(\theta )=0$.我们证明恰好存在三个不同的形式为 $x^4+bx^2+d$ 的单元三项式,它们的伽罗瓦群是阶数为 4 的循环群。我们还证明了当伽罗瓦群不是循环群时,情况会截然不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信