Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods

IF 1 4区 数学 Q1 MATHEMATICS
Keyan Wang
{"title":"Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods","authors":"Keyan Wang","doi":"10.1515/math-2024-0048","DOIUrl":null,"url":null,"abstract":"In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the fine grid size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>h</m:mi> </m:math> <jats:tex-math>h</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>h</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"script\">O</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁄</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>h={\\mathcal{O}}\\left({H}^{\\left(2k+1)/\\left(k+1)})</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>k\\ge 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0048_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> <jats:tex-math>k</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0048","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size H H and the fine grid size h h satisfy h = O ( H ( 2 k + 1 ) ( k + 1 ) ) h={\mathcal{O}}\left({H}^{\left(2k+1)/\left(k+1)}) ( k 1 k\ge 1 ), where k k is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.
用扩展混合有限元法分析二阶双曲方程的双网格法
在本文中,我们提出了一种使用扩展混合有限元法求解二维双曲方程的方案。为了更高效地求解由此产生的非线性扩展混合有限元系统,我们提出了一种两步双网格算法。在粗网格和细网格上都证明了数值稳定性和误差估计。结果表明,只要粗网格尺寸 H H 和细网格尺寸 h h 满足 h = O ( H ( 2 k + 1 ) ⁄ ( k + 1 ) ) h={mathcal{O}}\left({H}^{\left(2k+1)/\left(k+1)}) ( k ≥ 1 k\ge 1 ) ,其中 k k 是主变量近似空间的度数,双网格法就能实现渐近最优近似。数值实验证明了所提方法的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信