Note on stability estimation of stochastic difference equations

IF 1 4区 数学 Q1 MATHEMATICS
Evgueni Gordienko, Juan Ruiz de Chavez
{"title":"Note on stability estimation of stochastic difference equations","authors":"Evgueni Gordienko, Juan Ruiz de Chavez","doi":"10.1515/math-2024-0041","DOIUrl":null,"url":null,"abstract":"Stability estimates are proposed for two variants of Markov processes defined by stochastic difference equations: uncontrolled and controlled. Processes of this type are widely used in applications where their “governing distributions” are known only approximately, for example, as statistical estimates obtained from real data. Therefore, the problem of estimating deviations of output characteristics arises. The Kantorovich metric is used to measure the variations of probability distributions that govern the processes. In the uncontrolled case, the Kantorovich distance between the stationary distributions of the initial process and its perturbation is evaluated. On the other hand, the control processes being compared are endowed with an expected total discounted cost, and the inequality for the corresponding stability index is obtained. The stability index measures the increase in costs when using the control policy optimal for the “approximating process.”","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stability estimates are proposed for two variants of Markov processes defined by stochastic difference equations: uncontrolled and controlled. Processes of this type are widely used in applications where their “governing distributions” are known only approximately, for example, as statistical estimates obtained from real data. Therefore, the problem of estimating deviations of output characteristics arises. The Kantorovich metric is used to measure the variations of probability distributions that govern the processes. In the uncontrolled case, the Kantorovich distance between the stationary distributions of the initial process and its perturbation is evaluated. On the other hand, the control processes being compared are endowed with an expected total discounted cost, and the inequality for the corresponding stability index is obtained. The stability index measures the increase in costs when using the control policy optimal for the “approximating process.”
关于随机差分方程稳定性估计的说明
本文提出了由随机差分方程定义的马尔可夫过程的两种变体:非受控和受控过程的稳定性估计。这类过程在应用中被广泛使用,其 "支配分布 "仅为近似已知,例如,从真实数据中获得的统计估计值。因此,就出现了估计输出特性偏差的问题。康托洛维奇度量用于测量控制过程的概率分布的变化。在不受控制的情况下,要评估初始过程的静态分布与其扰动之间的康托洛维奇距离。另一方面,被比较的控制过程都有一个预期总贴现成本,从而得到相应的稳定性指数的不等式。稳定指数衡量的是使用 "近似过程 "最优控制策略时成本的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信