Reinsurance with neural networks

Aleksandar Arandjelović, Julia Eisenberg
{"title":"Reinsurance with neural networks","authors":"Aleksandar Arandjelović, Julia Eisenberg","doi":"arxiv-2408.06168","DOIUrl":null,"url":null,"abstract":"We consider an insurance company which faces financial risk in the form of\ninsurance claims and market-dependent surplus fluctuations. The company aims to\nsimultaneously control its terminal wealth (e.g. at the end of an accounting\nperiod) and the ruin probability in a finite time interval by purchasing\nreinsurance. The target functional is given by the expected utility of terminal\nwealth perturbed by a modified Gerber-Shiu penalty function. We solve the\nproblem of finding the optimal reinsurance strategy and the corresponding\nmaximal target functional via neural networks. The procedure is illustrated by\na numerical example, where the surplus process is given by a Cram\\'er-Lundberg\nmodel perturbed by a mean-reverting Ornstein-Uhlenbeck process.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an insurance company which faces financial risk in the form of insurance claims and market-dependent surplus fluctuations. The company aims to simultaneously control its terminal wealth (e.g. at the end of an accounting period) and the ruin probability in a finite time interval by purchasing reinsurance. The target functional is given by the expected utility of terminal wealth perturbed by a modified Gerber-Shiu penalty function. We solve the problem of finding the optimal reinsurance strategy and the corresponding maximal target functional via neural networks. The procedure is illustrated by a numerical example, where the surplus process is given by a Cram\'er-Lundberg model perturbed by a mean-reverting Ornstein-Uhlenbeck process.
神经网络再保险
我们考虑一家保险公司,它面临着保险索赔和市场盈余波动等形式的财务风险。该公司的目标是通过购买再保险,在有限的时间间隔内同时控制其最终财富(如会计期末)和毁损概率。目标函数由终端财富的期望效用给出,该效用受到修正的格伯-修惩罚函数的扰动。我们通过神经网络来解决寻找最优再保险策略和相应最大目标函数的问题。我们通过一个数值示例来说明这一过程,其中盈余过程是由均值回复的 Ornstein-Uhlenbeck 过程扰动的 Cram\'er-Lundberg 模型给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信