Using Fermat-Torricelli points in assessing investment risks

Sergey Yekimov
{"title":"Using Fermat-Torricelli points in assessing investment risks","authors":"Sergey Yekimov","doi":"arxiv-2408.09267","DOIUrl":null,"url":null,"abstract":"The use of Fermat-Torricelli points can be an effective mathematical tool for\nanalyzing numerical series that have a large variance, a pronounced nonlinear\ntrend, or do not have a normal distribution of a random variable. Linear\ndependencies are very rare in nature. Smoothing numerical series by\nconstructing Fermat-Torricelli points reduces the influence of the random\ncomponent on the final result. The presence of a normal distribution of a random variable for numerical\nseries that relate to long time intervals is an exception to the rule rather\nthan an axiom. The external environment (international economic relations,\nscientific and technological progress, political events) is constantly\nchanging, which in turn, in general, does not give grounds to assert that under\nthese conditions a random variable satisfies the requirements of the\nGauss-Markov theorem.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of Fermat-Torricelli points can be an effective mathematical tool for analyzing numerical series that have a large variance, a pronounced nonlinear trend, or do not have a normal distribution of a random variable. Linear dependencies are very rare in nature. Smoothing numerical series by constructing Fermat-Torricelli points reduces the influence of the random component on the final result. The presence of a normal distribution of a random variable for numerical series that relate to long time intervals is an exception to the rule rather than an axiom. The external environment (international economic relations, scientific and technological progress, political events) is constantly changing, which in turn, in general, does not give grounds to assert that under these conditions a random variable satisfies the requirements of the Gauss-Markov theorem.
利用费马-托里切利点评估投资风险
使用费马-托里切利点是分析方差较大、非线性趋势明显或随机变量不呈正态分布的数值序列的有效数学工具。线性依赖在自然界中非常罕见。通过构建费马-托里切利点来平滑数值序列,可以减少随机成分对最终结果的影响。与长时间段相关的数值序列的随机变量的正态分布是规则的例外而非公理。外部环境(国际经济关系、科技进步、政治事件)是不断变化的,这反过来又使我们没有理由断言在这些条件下随机变量满足高斯-马尔科夫定理的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信