Risk measures on incomplete markets: a new non-solid paradigm

Vasily Melnikov
{"title":"Risk measures on incomplete markets: a new non-solid paradigm","authors":"Vasily Melnikov","doi":"arxiv-2409.05194","DOIUrl":null,"url":null,"abstract":"The abstract theory of risk measures is well-developed for certain classes of\nsolid subspaces of $L^{0}$. We provide an example to illustrate that this\nframework is insufficient to deal with the subtleties of incomplete markets. To\nremedy this problem, we consider risk measures on the subspace generated by a\nclosed, absolutely convex, and bounded subset $K\\subset L^{0}$, which\nrepresents the attainable securities. In this context, we introduce the\nequicontinuous Fatou property. Under the existence of a certain topology $\\tau$\non $\\mathrm{span}(K)$, interpreted as a generalized weak-star topology, we\nobtain an equivalence between the equicontinuous Fatou property, and lower\nsemicontinuity with respect to $\\tau$. As a corollary, we obtain tractable dual\nrepresentations for such risk measures, which subsumes essentially all known\nresults on weak-star representations of risk measures. This dual representation\nallows one to prove that all risk measures of this form extend, in a maximal\nway, to the ideal generated by $\\mathrm{span}(K)$ while preserving a Fatou-like\nproperty.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The abstract theory of risk measures is well-developed for certain classes of solid subspaces of $L^{0}$. We provide an example to illustrate that this framework is insufficient to deal with the subtleties of incomplete markets. To remedy this problem, we consider risk measures on the subspace generated by a closed, absolutely convex, and bounded subset $K\subset L^{0}$, which represents the attainable securities. In this context, we introduce the equicontinuous Fatou property. Under the existence of a certain topology $\tau$ on $\mathrm{span}(K)$, interpreted as a generalized weak-star topology, we obtain an equivalence between the equicontinuous Fatou property, and lower semicontinuity with respect to $\tau$. As a corollary, we obtain tractable dual representations for such risk measures, which subsumes essentially all known results on weak-star representations of risk measures. This dual representation allows one to prove that all risk measures of this form extend, in a maximal way, to the ideal generated by $\mathrm{span}(K)$ while preserving a Fatou-like property.
不完全市场的风险度量:一种新的非稳固范式
对于 $L^{0}$ 的某些实体子空间类别,风险度量的抽象理论已经非常成熟。我们举例说明这一框架不足以处理不完全市场的微妙问题。为了解决这个问题,我们考虑了由封闭的、绝对凸的和有界的子集$K(子集 L^{0}$)所产生的子空间上的风险度量,它代表了可获得的证券。在此背景下,我们引入了连续法图属性。在$\mathrm{span}(K)$上存在某种拓扑$\tau$(可以解释为广义的弱星拓扑)的情况下,我们得到了等连续法图性质与关于$\tau$的低等连续性之间的等价关系。作为一个推论,我们得到了这类风险度量的可操作性对偶表示,它基本上包含了关于风险度量的弱星表示的所有已知结果。这种对偶表示允许我们证明这种形式的所有风险度量都以最大方式扩展到$m\mathrm{span}(K)$所产生的理想中,同时保留了类似法图的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信