NLP-Powered Repository and Search Engine for Academic Papers: A Case Study on Cyber Risk Literature with CyLit

Linfeng Zhang, Changyue Hu, Zhiyu Quan
{"title":"NLP-Powered Repository and Search Engine for Academic Papers: A Case Study on Cyber Risk Literature with CyLit","authors":"Linfeng Zhang, Changyue Hu, Zhiyu Quan","doi":"arxiv-2409.06226","DOIUrl":null,"url":null,"abstract":"As the body of academic literature continues to grow, researchers face\nincreasing difficulties in effectively searching for relevant resources.\nExisting databases and search engines often fall short of providing a\ncomprehensive and contextually relevant collection of academic literature. To\naddress this issue, we propose a novel framework that leverages Natural\nLanguage Processing (NLP) techniques. This framework automates the retrieval,\nsummarization, and clustering of academic literature within a specific research\ndomain. To demonstrate the effectiveness of our approach, we introduce CyLit,\nan NLP-powered repository specifically designed for the cyber risk literature.\nCyLit empowers researchers by providing access to context-specific resources\nand enabling the tracking of trends in the dynamic and rapidly evolving field\nof cyber risk. Through the automatic processing of large volumes of data, our\nNLP-powered solution significantly enhances the efficiency and specificity of\nacademic literature searches. We compare the literature categorization results\nof CyLit to those presented in survey papers or generated by ChatGPT,\nhighlighting the distinctive insights this tool provides into cyber risk\nresearch literature. Using NLP techniques, we aim to revolutionize the way\nresearchers discover, analyze, and utilize academic resources, ultimately\nfostering advancements in various domains of knowledge.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the body of academic literature continues to grow, researchers face increasing difficulties in effectively searching for relevant resources. Existing databases and search engines often fall short of providing a comprehensive and contextually relevant collection of academic literature. To address this issue, we propose a novel framework that leverages Natural Language Processing (NLP) techniques. This framework automates the retrieval, summarization, and clustering of academic literature within a specific research domain. To demonstrate the effectiveness of our approach, we introduce CyLit, an NLP-powered repository specifically designed for the cyber risk literature. CyLit empowers researchers by providing access to context-specific resources and enabling the tracking of trends in the dynamic and rapidly evolving field of cyber risk. Through the automatic processing of large volumes of data, our NLP-powered solution significantly enhances the efficiency and specificity of academic literature searches. We compare the literature categorization results of CyLit to those presented in survey papers or generated by ChatGPT, highlighting the distinctive insights this tool provides into cyber risk research literature. Using NLP techniques, we aim to revolutionize the way researchers discover, analyze, and utilize academic resources, ultimately fostering advancements in various domains of knowledge.
NLP 驱动的学术论文库和搜索引擎:使用 CyLit 的网络风险文献案例研究
随着学术文献的不断增加,研究人员在有效搜索相关资源时面临着越来越多的困难。现有的数据库和搜索引擎往往无法提供全面且与上下文相关的学术文献集。为了解决这个问题,我们提出了一种利用自然语言处理(NLP)技术的新型框架。该框架可自动检索、总结和聚类特定研究领域内的学术文献。为了证明我们的方法的有效性,我们介绍了 CyLit,这是一个专门为网络风险文献设计的、由 NLP 驱动的资源库。CyLit 可为研究人员提供访问特定上下文资源的途径,并可追踪动态和快速发展的网络风险领域的趋势。通过对大量数据的自动处理,我们由 NLP 驱动的解决方案大大提高了学术文献检索的效率和针对性。我们将 CyLit 的文献分类结果与调查论文中提出的或由 ChatGPT 生成的结果进行了比较,突出了这一工具为网络风险研究文献提供的独特见解。利用 NLP 技术,我们的目标是彻底改变研究人员发现、分析和利用学术资源的方式,最终促进各知识领域的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信