Influence of the Summer Changes in Large-scale Atmospheric Circulation on the Vertical Fluxes of Heat and Moisture in Russian Landscape Zones

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
T. B. Titkova, A. N. Zolotokrylin
{"title":"Influence of the Summer Changes in Large-scale Atmospheric Circulation on the Vertical Fluxes of Heat and Moisture in Russian Landscape Zones","authors":"T. B. Titkova, A. N. Zolotokrylin","doi":"10.3103/s1068373924060025","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The summer changes in the vertical heat and moisture fluxes in Russian landscape zones were analyzed in connection with the changes in the indices of the leading modes of general atmospheric circulation, sea surface temperature, and air temperature. The series of the circulation indices and ERA5 and ERA5-Land reanalysis data were used. The contribution of the general circulation modes, sea surface temperature, and air temperature to the changes in heat and moisture fluxes on Russian plain territories can vary from 40 to 90% depending on a landscape zone. The vertical fluxes of heat and moisture in European Russia and Western Siberia are largely dependent on the SCAND and EA/WR regional modes of atmospheric circulation. With a change in the phases of SCAND and EA/WR from positive to negative, a significant increase in the areas of influence of these modes on heat fluxes occurred in subarctic and boreal landscapes, and a decrease in the areas of influence on moisture divergence was registered in boreal and subboreal landscapes. In the summers of 1950–2021, trends in upward sensible heat fluxes were evident in subboreal landscapes of eastern European Russia (4–6%/10 years). The trends in upward latent heat fluxes in subarctic and boreal landscapes of Western Siberia were about 3%, and the ones in downward latent heat fluxes in subboreal landscapes made up about 5%. The trends in upward moisture fluxes in subarctic and northern boreal landscapes were registered at the level of 5–7%, and an increase in downward moisture fluxes by 10% was observed in subboreal landscapes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924060025","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The summer changes in the vertical heat and moisture fluxes in Russian landscape zones were analyzed in connection with the changes in the indices of the leading modes of general atmospheric circulation, sea surface temperature, and air temperature. The series of the circulation indices and ERA5 and ERA5-Land reanalysis data were used. The contribution of the general circulation modes, sea surface temperature, and air temperature to the changes in heat and moisture fluxes on Russian plain territories can vary from 40 to 90% depending on a landscape zone. The vertical fluxes of heat and moisture in European Russia and Western Siberia are largely dependent on the SCAND and EA/WR regional modes of atmospheric circulation. With a change in the phases of SCAND and EA/WR from positive to negative, a significant increase in the areas of influence of these modes on heat fluxes occurred in subarctic and boreal landscapes, and a decrease in the areas of influence on moisture divergence was registered in boreal and subboreal landscapes. In the summers of 1950–2021, trends in upward sensible heat fluxes were evident in subboreal landscapes of eastern European Russia (4–6%/10 years). The trends in upward latent heat fluxes in subarctic and boreal landscapes of Western Siberia were about 3%, and the ones in downward latent heat fluxes in subboreal landscapes made up about 5%. The trends in upward moisture fluxes in subarctic and northern boreal landscapes were registered at the level of 5–7%, and an increase in downward moisture fluxes by 10% was observed in subboreal landscapes.

Abstract Image

夏季大尺度大气环流变化对俄罗斯景观带热量和水分垂直通量的影响
摘要 结合大气环流主导模式指数、海面温度和气温的变化,分析了俄罗斯景观带夏季垂直热量和湿度通量的变化。研究使用了环流指数序列以及ERA5 和 ERA5-Land 再分析数据。大气环流模式、海面温度和气温对俄罗斯平原地区热量和湿度通量变化的贡献率在 40% 到 90% 之间,具体取决于地貌区。俄罗斯欧洲和西西伯利亚的热量和水分垂直通量主要取决于 SCAND 和 EA/WR 区域大气环流模式。随着 SCAND 和 EA/WR 相位由正转负,这些模式对亚寒带和寒带热通量的影响区域显著增加,而对寒带和亚寒带湿度分异的影响区域有所减少。1950-2021 年的夏季,俄罗斯东欧亚寒带地区的显热通量呈明显上升趋势(4-6%/10 年)。西西伯利亚亚北极和寒带地貌的潜热通量上升趋势约为 3%,亚寒带地貌的潜热通量下降趋势约为 5%。亚北极和北寒带地貌的湿通量上升趋势为 5-7%,亚寒带地貌的湿通量下降趋势增加了 10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信