Luke Arabskyj, Philip R Dolan, Adam L Parke, Ted S Santana, Simon R G Hall, Geiland Porrovecchio, Marek Smid, Marco Lucamarini, Christopher J Chunnilall
{"title":"Traceable characterisation of fibre-coupled single-photon detectors","authors":"Luke Arabskyj, Philip R Dolan, Adam L Parke, Ted S Santana, Simon R G Hall, Geiland Porrovecchio, Marek Smid, Marco Lucamarini, Christopher J Chunnilall","doi":"10.1088/1681-7575/ad70bc","DOIUrl":null,"url":null,"abstract":"The detection of single photons plays an essential role in advancing single-photon science and technologies. Yet, within the visible/near-infrared spectral region, accurate fibre-based optical power measurements at the few-photon level are not yet well-established. In this study, we report on a fibre-based setup, enabling traceable optical power measurements at the few-photon level in this spectral region. The setup was used to calibrate the detection efficiency (DE) of four single-photon avalanche diode (SPAD) detectors. The relative standard uncertainties on the mean DE values obtained from repeat fibre-to-detector couplings ranged from 0.67% to 0.81% (<italic toggle=\"yes\">k</italic> = 2). However, the relative standard deviation of DE values, which ranged from 1.38% to 3.20% (<italic toggle=\"yes\">k</italic> = 2), poses a challenge for the metrology of these devices and applications that require high accuracy and repeatability. We investigated the source of these variations by spatially mapping the response of a detector’s fibre connector port, using a focused free-space beam, allowing us to estimate the detector’s spatial non-uniformity. In addition, we realise a novel calibration approach for fibre-coupled SPADs in a free-space configuration, enabling a direct comparison between the fibre-based setup and the National Physical Laboratory’s established free-space facility using a single SPAD. Finally, we investigated alternative coupling methods, testing the repeatability of different fibre-to-fibre connectors in addition to direct fibre-to-detector couplings: SPADs from three manufacturers were tested, with both single-mode and multi-mode fibre.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1681-7575/ad70bc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of single photons plays an essential role in advancing single-photon science and technologies. Yet, within the visible/near-infrared spectral region, accurate fibre-based optical power measurements at the few-photon level are not yet well-established. In this study, we report on a fibre-based setup, enabling traceable optical power measurements at the few-photon level in this spectral region. The setup was used to calibrate the detection efficiency (DE) of four single-photon avalanche diode (SPAD) detectors. The relative standard uncertainties on the mean DE values obtained from repeat fibre-to-detector couplings ranged from 0.67% to 0.81% (k = 2). However, the relative standard deviation of DE values, which ranged from 1.38% to 3.20% (k = 2), poses a challenge for the metrology of these devices and applications that require high accuracy and repeatability. We investigated the source of these variations by spatially mapping the response of a detector’s fibre connector port, using a focused free-space beam, allowing us to estimate the detector’s spatial non-uniformity. In addition, we realise a novel calibration approach for fibre-coupled SPADs in a free-space configuration, enabling a direct comparison between the fibre-based setup and the National Physical Laboratory’s established free-space facility using a single SPAD. Finally, we investigated alternative coupling methods, testing the repeatability of different fibre-to-fibre connectors in addition to direct fibre-to-detector couplings: SPADs from three manufacturers were tested, with both single-mode and multi-mode fibre.