Large Investment Model

Jian Guo, Heung-Yeung Shum
{"title":"Large Investment Model","authors":"Jian Guo, Heung-Yeung Shum","doi":"arxiv-2408.10255","DOIUrl":null,"url":null,"abstract":"Traditional quantitative investment research is encountering diminishing\nreturns alongside rising labor and time costs. To overcome these challenges, we\nintroduce the Large Investment Model (LIM), a novel research paradigm designed\nto enhance both performance and efficiency at scale. LIM employs end-to-end\nlearning and universal modeling to create an upstream foundation model capable\nof autonomously learning comprehensive signal patterns from diverse financial\ndata spanning multiple exchanges, instruments, and frequencies. These \"global\npatterns\" are subsequently transferred to downstream strategy modeling,\noptimizing performance for specific tasks. We detail the system architecture\ndesign of LIM, address the technical challenges inherent in this approach, and\noutline potential directions for future research. The advantages of LIM are\ndemonstrated through a series of numerical experiments on cross-instrument\nprediction for commodity futures trading, leveraging insights from stock\nmarkets.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional quantitative investment research is encountering diminishing returns alongside rising labor and time costs. To overcome these challenges, we introduce the Large Investment Model (LIM), a novel research paradigm designed to enhance both performance and efficiency at scale. LIM employs end-to-end learning and universal modeling to create an upstream foundation model capable of autonomously learning comprehensive signal patterns from diverse financial data spanning multiple exchanges, instruments, and frequencies. These "global patterns" are subsequently transferred to downstream strategy modeling, optimizing performance for specific tasks. We detail the system architecture design of LIM, address the technical challenges inherent in this approach, and outline potential directions for future research. The advantages of LIM are demonstrated through a series of numerical experiments on cross-instrument prediction for commodity futures trading, leveraging insights from stock markets.
大型投资模式
传统的定量投资研究在人力和时间成本上升的同时,也遇到了收益递减的问题。为了克服这些挑战,我们推出了大型投资模型(LIM),这是一种新颖的研究范式,旨在大规模提高性能和效率。LIM 采用端到端学习和通用建模技术,创建了一个上游基础模型,能够从跨越多个交易所、工具和频率的各种金融数据中自主学习综合信号模式。这些 "全局模式 "随后被转移到下游策略建模中,优化特定任务的性能。我们详细介绍了 LIM 的系统架构设计,解决了这一方法固有的技术难题,并概述了未来研究的潜在方向。我们利用从股票市场中获得的洞察力,对商品期货交易的跨工具预测进行了一系列数值实验,从而展示了 LIM 的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信