A GCN-LSTM Approach for ES-mini and VX Futures Forecasting

Nikolas Michael, Mihai Cucuringu, Sam Howison
{"title":"A GCN-LSTM Approach for ES-mini and VX Futures Forecasting","authors":"Nikolas Michael, Mihai Cucuringu, Sam Howison","doi":"arxiv-2408.05659","DOIUrl":null,"url":null,"abstract":"We propose a novel data-driven network framework for forecasting problems\nrelated to E-mini S\\&P 500 and CBOE Volatility Index futures, in which products\nwith different expirations act as distinct nodes. We provide visual\ndemonstrations of the correlation structures of these products in terms of\ntheir returns, realized volatility, and trading volume. The resulting networks\noffer insights into the contemporaneous movements across the different\nproducts, illustrating how inherently connected the movements of the future\nproducts belonging to these two classes are. These networks are further\nutilized by a multi-channel Graph Convolutional Network to enhance the\npredictive power of a Long Short-Term Memory network, allowing for the\npropagation of forecasts of highly correlated quantities, combining the\ntemporal with the spatial aspect of the term structure.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel data-driven network framework for forecasting problems related to E-mini S\&P 500 and CBOE Volatility Index futures, in which products with different expirations act as distinct nodes. We provide visual demonstrations of the correlation structures of these products in terms of their returns, realized volatility, and trading volume. The resulting networks offer insights into the contemporaneous movements across the different products, illustrating how inherently connected the movements of the future products belonging to these two classes are. These networks are further utilized by a multi-channel Graph Convolutional Network to enhance the predictive power of a Long Short-Term Memory network, allowing for the propagation of forecasts of highly correlated quantities, combining the temporal with the spatial aspect of the term structure.
用于 ES-mini 和 VX 期货预测的 GCN-LSTM 方法
我们提出了一个新颖的数据驱动网络框架,用于预测与 E-mini S&P 500 和 CBOE 波动率指数期货相关的问题,其中不同到期日的产品作为不同的节点。我们从这些产品的收益、已实现波动率和交易量等方面直观地展示了它们的相关性结构。由此产生的网络提供了对不同产品同期走势的洞察,说明了属于这两类的未来产品的走势是如何内在地联系在一起的。多通道图卷积网络进一步利用这些网络,增强了长短期记忆网络的预测能力,使高度相关数量的预测得以传播,从而将期限结构的时间和空间方面结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信