Dynamical analysis of financial stocks network: improving forecasting using network properties

Ixandra Achitouv
{"title":"Dynamical analysis of financial stocks network: improving forecasting using network properties","authors":"Ixandra Achitouv","doi":"arxiv-2408.11759","DOIUrl":null,"url":null,"abstract":"Applying a network analysis to stock return correlations, we study the\ndynamical properties of the network and how they correlate with the market\nreturn, finding meaningful variables that partially capture the complex\ndynamical processes of stock interactions and the market structure. We then use\nthe individual properties of stocks within the network along with the global\nones, to find correlations with the future returns of individual S&P 500\nstocks. Applying these properties as input variables for forecasting, we find a\n50% improvement on the R2score in the prediction of stock returns on long time\nscales (per year), and 3% on short time scales (2 days), relative to baseline\nmodels without network variables.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Applying a network analysis to stock return correlations, we study the dynamical properties of the network and how they correlate with the market return, finding meaningful variables that partially capture the complex dynamical processes of stock interactions and the market structure. We then use the individual properties of stocks within the network along with the global ones, to find correlations with the future returns of individual S&P 500 stocks. Applying these properties as input variables for forecasting, we find a 50% improvement on the R2score in the prediction of stock returns on long time scales (per year), and 3% on short time scales (2 days), relative to baseline models without network variables.
金融股网络动态分析:利用网络特性改进预测
通过对股票收益相关性进行网络分析,我们研究了网络的动态特性及其与市场收益的相关性,发现了一些有意义的变量,它们部分捕捉到了股票互动和市场结构的复杂动态过程。然后,我们利用网络中股票的个别属性和全球属性,找出与标准普尔 500 指数个股未来回报的相关性。通过将这些属性作为预测的输入变量,我们发现相对于没有网络变量的基线模型,在预测股票回报率方面,长时间尺度(每年)的 R2 分数提高了 50%,短时间尺度(2 天)的 R2 分数提高了 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信