Measurement-device-independent multi-party quantum secure direct communication

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ran Guo, Ri-Gui Zhou, Xiao-Xue Zhang
{"title":"Measurement-device-independent multi-party quantum secure direct communication","authors":"Ran Guo,&nbsp;Ri-Gui Zhou,&nbsp;Xiao-Xue Zhang","doi":"10.1007/s11128-024-04505-8","DOIUrl":null,"url":null,"abstract":"<div><p>As one of the most important branches of quantum information science, quantum communication is known for its unconditional security and efficiency. Nevertheless, the practical security of quantum key distribution protocols and quantum secure direct communication protocols is challenged due to the imperfections in experimental devices. Despite significant progress in theoretical and experimental research on the MDI-QSDC Protocol, challenges and unresolved issues remain. For example, further enhancing the scalability and system complexity of the protocol to meet the demands of large-scale quantum networks is necessary. In this paper, we propose a multi-party MDI-QSDC scheme based on multi-degree-of-freedom hyperentangled photons. Compared to the original MDI-QSDC protocol, our protocol allows multiple parties to participate in the information transmission process. For example, for four communicating parties, we can encode the information of three independent degrees of freedom so that each photon of each degree of freedom can transmit 2 bits of information. Moreover, all measurement tasks are performed by the fifth party, which can be untrusted or even completely controlled by eavesdroppers. The protocol is resistant to all possible attacks from imperfect measurement devices. It can eventually be extended to arbitrary degrees of freedom, allowing multiple parties to participate.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04505-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the most important branches of quantum information science, quantum communication is known for its unconditional security and efficiency. Nevertheless, the practical security of quantum key distribution protocols and quantum secure direct communication protocols is challenged due to the imperfections in experimental devices. Despite significant progress in theoretical and experimental research on the MDI-QSDC Protocol, challenges and unresolved issues remain. For example, further enhancing the scalability and system complexity of the protocol to meet the demands of large-scale quantum networks is necessary. In this paper, we propose a multi-party MDI-QSDC scheme based on multi-degree-of-freedom hyperentangled photons. Compared to the original MDI-QSDC protocol, our protocol allows multiple parties to participate in the information transmission process. For example, for four communicating parties, we can encode the information of three independent degrees of freedom so that each photon of each degree of freedom can transmit 2 bits of information. Moreover, all measurement tasks are performed by the fifth party, which can be untrusted or even completely controlled by eavesdroppers. The protocol is resistant to all possible attacks from imperfect measurement devices. It can eventually be extended to arbitrary degrees of freedom, allowing multiple parties to participate.

Abstract Image

与测量设备无关的多方量子安全直接通信
作为量子信息科学最重要的分支之一,量子通信以其无条件的安全性和高效性而著称。然而,由于实验设备的不完善,量子密钥分发协议和量子安全直接通信协议的实际安全性受到了挑战。尽管 MDI-QSDC 协议的理论和实验研究取得了重大进展,但挑战和未解决的问题依然存在。例如,有必要进一步提高协议的可扩展性和系统复杂性,以满足大规模量子网络的需求。本文提出了一种基于多自由度超纠缠光子的多方 MDI-QSDC 方案。与原始 MDI-QSDC 协议相比,我们的协议允许多方参与信息传输过程。例如,对于四个通信方,我们可以对三个独立自由度的信息进行编码,这样每个自由度的每个光子可以传输 2 比特的信息。此外,所有测量任务都由第五方执行,而第五方可以是不受信任的,甚至完全由窃听者控制。该协议可抵御来自不完善测量设备的所有可能攻击。它最终可以扩展到任意自由度,允许多方参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信