{"title":"A novel spectral-spatial 3D auxiliary conditional GAN integrated convolutional LSTM for hyperspectral image classification","authors":"Pallavi Ranjan, Ashish Girdhar, Ankur, Rajeev Kumar","doi":"10.1007/s12145-024-01451-y","DOIUrl":null,"url":null,"abstract":"<p>Hyperspectral Imaging (HSI) has revolutionized earth observation through advanced remote sensing technology, providing rich spectral and spatial information across multiple bands. However, this wealth of data introduces significant challenges for classification, including high spectral correlation, the curse of dimensionality due to limited labeled data, the need to model long-term dependencies, and the impact of sample input on deep learning performance. These challenges are further exacerbated by the costly and complex acquisition of HSI data, resulting in limited availability of labeled samples and class imbalances. To address these critical issues, our study proposes a novel approach for generating high-quality synthetic hyperspectral data cubes using an advanced Generative Adversarial Network (GAN) integrated with the Wasserstein loss and gradient penalty phenomenon (WGAN-GP). This approach aims to augment real-world data, mitigating the scarcity of labeled samples that has long been a bottleneck in hyperspectral image analysis and classification. To fully leverage both the synthetic and real data, we introduce a novel Convolutional LSTM classifier designed to process the intricate spatial and spectral correlations inherent in hyperspectral data. This classifier excels in modeling multi-dimensional relationships within the data, effectively capturing long-term dependencies and improving feature extraction and classification accuracy. The performance of our proposed model, termed 3D-ACWGAN-ConvLSTM, is rigorously validated using benchmark hyperspectral datasets, demonstrating its effectiveness in augmenting real-world data and enhancing classification performance. This research contributes to addressing the critical need for robust data augmentation techniques in hyperspectral imaging, potentially opening new avenues for applications in areas constrained by limited data availability and complex spectral-spatial relationships.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01451-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral Imaging (HSI) has revolutionized earth observation through advanced remote sensing technology, providing rich spectral and spatial information across multiple bands. However, this wealth of data introduces significant challenges for classification, including high spectral correlation, the curse of dimensionality due to limited labeled data, the need to model long-term dependencies, and the impact of sample input on deep learning performance. These challenges are further exacerbated by the costly and complex acquisition of HSI data, resulting in limited availability of labeled samples and class imbalances. To address these critical issues, our study proposes a novel approach for generating high-quality synthetic hyperspectral data cubes using an advanced Generative Adversarial Network (GAN) integrated with the Wasserstein loss and gradient penalty phenomenon (WGAN-GP). This approach aims to augment real-world data, mitigating the scarcity of labeled samples that has long been a bottleneck in hyperspectral image analysis and classification. To fully leverage both the synthetic and real data, we introduce a novel Convolutional LSTM classifier designed to process the intricate spatial and spectral correlations inherent in hyperspectral data. This classifier excels in modeling multi-dimensional relationships within the data, effectively capturing long-term dependencies and improving feature extraction and classification accuracy. The performance of our proposed model, termed 3D-ACWGAN-ConvLSTM, is rigorously validated using benchmark hyperspectral datasets, demonstrating its effectiveness in augmenting real-world data and enhancing classification performance. This research contributes to addressing the critical need for robust data augmentation techniques in hyperspectral imaging, potentially opening new avenues for applications in areas constrained by limited data availability and complex spectral-spatial relationships.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.