The Method of Comparison with a Model Equation in the Study of Inclusions in Vector Metric Spaces

Pub Date : 2024-08-20 DOI:10.1134/s0081543824030180
E. S. Zhukovskiy, E. A. Panasenko
{"title":"The Method of Comparison with a Model Equation in the Study of Inclusions in Vector Metric Spaces","authors":"E. S. Zhukovskiy, E. A. Panasenko","doi":"10.1134/s0081543824030180","DOIUrl":null,"url":null,"abstract":"<p>For a given multivalued mapping <span>\\(F:X\\rightrightarrows Y\\)</span> and a given element <span>\\(\\tilde{y}\\in Y\\)</span>, the existence of a solution <span>\\(x\\in X\\)</span> to the inclusion <span>\\(F(x)\\ni\\tilde{y}\\)</span> and its estimates are studied. The sets <span>\\(X\\)</span> and <span>\\(Y\\)</span> are endowed with vector-valued metrics <span>\\(\\mathcal{P}_{X}^{E_{+}}\\)</span> and <span>\\(\\mathcal{P}_{Y}^{M_{+}}\\)</span>, whose values belong to cones <span>\\(E_{+}\\)</span> and <span>\\(M_{+}\\)</span> of a Banach space <span>\\(E\\)</span> and a linear topological space <span>\\(M\\)</span>, respectively. The inclusion is compared with a “model” equation <span>\\(f(t)=0\\)</span>, where <span>\\(f:E_{+}\\to M\\)</span>. It is assumed that <span>\\(f\\)</span> can be written as <span>\\(f(t)\\equiv g(t,t)\\)</span>, where the mapping <span>\\(g:{E}_{+}\\times{E}_{+}\\to M\\)</span> orderly covers the set <span>\\(\\{0\\}\\subset M\\)</span> with respect to the first argument and is antitone with respect to the second argument and <span>\\(-g(0,0)\\in M_{+}\\)</span>. It is shown that, in this case, the equation <span>\\(f(t)=0\\)</span> has a solution <span>\\(t^{*}\\in E_{+}\\)</span>. Further, conditions on the connection between <span>\\(f(0)\\)</span> and <span>\\(F(x_{0})\\)</span> and between the increments of <span>\\(f(t)\\)</span> for <span>\\(t\\in[0,t^{*}]\\)</span> and the increments of <span>\\(F(x)\\)</span> for all <span>\\(x\\)</span> in the ball of radius <span>\\(t^{*}\\)</span> centered at <span>\\(x_{0}\\)</span>\nfor some <span>\\(x_{0}\\)</span> are formulated, and it is shown that the inclusion has a solution in the ball under these conditions. The results on the operator inclusion obtained in the paper are applied to studying an integral inclusion.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543824030180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a given multivalued mapping \(F:X\rightrightarrows Y\) and a given element \(\tilde{y}\in Y\), the existence of a solution \(x\in X\) to the inclusion \(F(x)\ni\tilde{y}\) and its estimates are studied. The sets \(X\) and \(Y\) are endowed with vector-valued metrics \(\mathcal{P}_{X}^{E_{+}}\) and \(\mathcal{P}_{Y}^{M_{+}}\), whose values belong to cones \(E_{+}\) and \(M_{+}\) of a Banach space \(E\) and a linear topological space \(M\), respectively. The inclusion is compared with a “model” equation \(f(t)=0\), where \(f:E_{+}\to M\). It is assumed that \(f\) can be written as \(f(t)\equiv g(t,t)\), where the mapping \(g:{E}_{+}\times{E}_{+}\to M\) orderly covers the set \(\{0\}\subset M\) with respect to the first argument and is antitone with respect to the second argument and \(-g(0,0)\in M_{+}\). It is shown that, in this case, the equation \(f(t)=0\) has a solution \(t^{*}\in E_{+}\). Further, conditions on the connection between \(f(0)\) and \(F(x_{0})\) and between the increments of \(f(t)\) for \(t\in[0,t^{*}]\) and the increments of \(F(x)\) for all \(x\) in the ball of radius \(t^{*}\) centered at \(x_{0}\) for some \(x_{0}\) are formulated, and it is shown that the inclusion has a solution in the ball under these conditions. The results on the operator inclusion obtained in the paper are applied to studying an integral inclusion.

分享
查看原文
矢量公设空间夹杂物研究中的模型方程比较法
对于给定的多值映射 \(F:X\rightarrows Y\) 和给定的元素 \(\tilde{y}\in Y\) ,研究了包含 \(F(x)\ni\tilde{y}\) 的解\(x\in X\) 的存在性及其估计值。集合 \(X\) 和 \(Y\) 被赋予向量值度量 \(\mathcal{P}_{X}^{E_{+}}\) 和 \(\mathcal{P}_{Y}^{M_{+}}\)、其值分别属于巴拿赫空间 \(E\) 和线性拓扑空间 \(M\) 的圆锥 \(E_{+}\) 和 \(M_{+}\) 。包含式与 "模型 "方程 \(f(t)=0\)进行比较,其中 \(f:E_{+}\to M\)。假定 \(f)可以写成 \(f(t)equiv g(t,t)),其中映射 \(g:{E}_{+}\times{E}_{+}\to M\)相对于第一个参数有序地覆盖了集合 \(\{0}\subset M\) ,并且相对于第二个参数和 \(-g(0,0)\in M{+})是对立的。在这种情况下,方程 \(f(t)=0\) 有一个解 \(t^{*}\in E_{+}\).此外,关于 \(f(0)\) 和 \(F(x_{0})\) 之间的联系以及 \(t\in[0、t^{*}])的增量和以\(x_{0}\)为圆心的半径为\(t^{*}\)的球中所有\(x)的\(F(x)\)的增量之间的关系进行了阐述,并证明了在这些条件下,包容在球中有解。文中得到的关于算子包含的结果被应用于研究积分包含。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信