Finite Groups with $$\mathbb{P}$$ -Subnormal Schmidt Subgroups

Pub Date : 2024-08-20 DOI:10.1134/s0081543824030179
Xiaolan Yi, Zhuyan Xu, S. F. Kamornikov
{"title":"Finite Groups with $$\\mathbb{P}$$ -Subnormal Schmidt Subgroups","authors":"Xiaolan Yi, Zhuyan Xu, S. F. Kamornikov","doi":"10.1134/s0081543824030179","DOIUrl":null,"url":null,"abstract":"<p>A subgroup <span>\\(H\\)</span> of a group <span>\\(G\\)</span> is called <span>\\(\\mathbb{P}\\)</span>-subnormal in <span>\\(G\\)</span> whenever either <span>\\(H=G\\)</span> or there is a chain of subgroups\n<span>\\(H=H_{0}\\subset H_{1}\\subset\\mathinner{\\ldotp\\ldotp\\ldotp}\\subset H_{n}=G\\)</span>\nsuch that <span>\\(|H_{i}:H_{i-1}|\\)</span> is a prime for every <span>\\(i=1,2,\\mathinner{\\ldotp\\ldotp\\ldotp},n\\)</span>. We study the structure of a finite group <span>\\(G\\)</span> all of whose Schmidt subgroups are <span>\\(\\mathbb{P}\\)</span>-subnormal. The obtained results complement the answer to Problem 18.30 in the <i>Kourovka Notebook</i>..</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543824030179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A subgroup \(H\) of a group \(G\) is called \(\mathbb{P}\)-subnormal in \(G\) whenever either \(H=G\) or there is a chain of subgroups \(H=H_{0}\subset H_{1}\subset\mathinner{\ldotp\ldotp\ldotp}\subset H_{n}=G\) such that \(|H_{i}:H_{i-1}|\) is a prime for every \(i=1,2,\mathinner{\ldotp\ldotp\ldotp},n\). We study the structure of a finite group \(G\) all of whose Schmidt subgroups are \(\mathbb{P}\)-subnormal. The obtained results complement the answer to Problem 18.30 in the Kourovka Notebook..

分享
查看原文
具有 $$\mathbb{P}$ -Subnormal Schmidt 子群的有限群
一个群(G)的子群(H)在(G)中被称为(\mathbb{P}\)-subnormal,只要(H=G)或者存在一个子群链(H=H_{0}(子集H_{1}(子集H_{n}=G)),使得(|H_{i}:(i=1,2,\mathinner{ldotp\ldotp},n\) 都是素数。我们研究了有限群 \(G\)的结构,它的所有施密特子群都是\(\mathbb{P}\)-次正态的。所得结果是对《库洛夫卡笔记本》中问题 18.30 答案的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信