Nonpronormal Subgroups of Odd Index in Finite Simple Linear and Unitary Groups

Pub Date : 2024-08-20 DOI:10.1134/s0081543824030088
Wenbin Guo, N. V. Maslova, D. O. Revin
{"title":"Nonpronormal Subgroups of Odd Index in Finite Simple Linear and Unitary Groups","authors":"Wenbin Guo, N. V. Maslova, D. O. Revin","doi":"10.1134/s0081543824030088","DOIUrl":null,"url":null,"abstract":"<p>A subgroup <span>\\(H\\)</span> of a group <span>\\(G\\)</span> is <i>pronormal</i> if, for each <span>\\(g\\in G\\)</span>, the subgroups <span>\\(H\\)</span> and <span>\\(H^{g}\\)</span> are conjugate in <span>\\(\\langle H,H^{g}\\rangle\\)</span>. Most of finite simple groups possess the following property <span>\\((\\ast)\\)</span>: each subgroup of odd index is pronormal in the group. The conjecture that all finite simple groups possess the property <span>\\((\\ast)\\)</span> was established in 2012 in a paper by E.P. Vdovin and the third author based on the analysis of the proof that Hall subgroups are pronormal in finite simple groups. However, the conjecture was disproved in 2016 by A.S. Kondrat’ev together with the second and third authors. In a series of papers by Kondrat’ev and the authors published from 2015 to 2020, the finite simple groups with the property <span>\\((\\ast)\\)</span> except finite simple linear and unitary groups with some constraints on natural arithmetic parameters were classified. In this paper, we construct series of examples of nonpronormal subgroups of odd index in finite simple linear and unitary groups over a field of odd characteristic, thereby making a step towards completing the classification of finite simple groups with the property <span>\\((\\ast)\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543824030088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A subgroup \(H\) of a group \(G\) is pronormal if, for each \(g\in G\), the subgroups \(H\) and \(H^{g}\) are conjugate in \(\langle H,H^{g}\rangle\). Most of finite simple groups possess the following property \((\ast)\): each subgroup of odd index is pronormal in the group. The conjecture that all finite simple groups possess the property \((\ast)\) was established in 2012 in a paper by E.P. Vdovin and the third author based on the analysis of the proof that Hall subgroups are pronormal in finite simple groups. However, the conjecture was disproved in 2016 by A.S. Kondrat’ev together with the second and third authors. In a series of papers by Kondrat’ev and the authors published from 2015 to 2020, the finite simple groups with the property \((\ast)\) except finite simple linear and unitary groups with some constraints on natural arithmetic parameters were classified. In this paper, we construct series of examples of nonpronormal subgroups of odd index in finite simple linear and unitary groups over a field of odd characteristic, thereby making a step towards completing the classification of finite simple groups with the property \((\ast)\).

分享
查看原文
有限简单线性群和单元群中的奇数索引非正则子群
一个群(G)的子群(H)是正则群(pronormal),如果对于每一个群(G),子群(H)和(H^{g}\)在(H,H^{g}\rangle)中是共轭的。大多数有限单纯群都具有以下性质:每个奇数索引的子群在群中都是代规范的。2012 年,E.P. Vdovin 和第三作者在一篇论文中基于霍尔子群在有限单纯群中是代正值的证明分析,提出了所有有限单纯群都具有 \((\ast)\) 性质的猜想。然而,2016 年,A.S. Kondrat'ev 与第二和第三作者一起推翻了这一猜想。在 Kondrat'ev 和作者们从 2015 年到 2020 年发表的一系列论文中,对具有 \((\ast)\) 属性的有限简单群进行了分类,但对自然算术参数有一些限制的有限简单线性群和单元群除外。在本文中,我们在奇特征域上的有限简单线性群和单元群中构造了一系列奇索引的非正则子群的例子,从而为完成具有(\ast)性质的有限简单群的分类迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信