S. D. Viktorov, V. M. Zakalinskii, I. E. Shipovskii, R. Ya. Mingazov
{"title":"Effect of Directed Blasting on Geotechnology and Geomechanical Behavior of Rock Mass in Deep-Level Mining","authors":"S. D. Viktorov, V. M. Zakalinskii, I. E. Shipovskii, R. Ya. Mingazov","doi":"10.1134/s1062739124020121","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The authors put forward a look-ahead concept of science-based problem solving in deep-level mining. The issues of the problem realization and tooling are also addressed. A borehole charge is designed as a cluster of close-spaced borehole charges to produce the directed blast effect by varying the cluster charge layout in a wide range. Using alternative technical capabilities of drilling, it is possible to variously redisperse the same equivalent energy in the single large-diameter borehole charge and in the cluster of smaller diameter borehole charges. The blast mechanism of the cluster charge pushes the limits of its application range and offers new approaches to problem solving in deep-level mining. Some technological aspects of geotechnologies are presented through the results of modeling the new approach to blast-induced impact using smooth particle hydrodynamics. Some tentative research findings inspire continuing with the study.</p>","PeriodicalId":16358,"journal":{"name":"Journal of Mining Science","volume":"24 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1062739124020121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
The authors put forward a look-ahead concept of science-based problem solving in deep-level mining. The issues of the problem realization and tooling are also addressed. A borehole charge is designed as a cluster of close-spaced borehole charges to produce the directed blast effect by varying the cluster charge layout in a wide range. Using alternative technical capabilities of drilling, it is possible to variously redisperse the same equivalent energy in the single large-diameter borehole charge and in the cluster of smaller diameter borehole charges. The blast mechanism of the cluster charge pushes the limits of its application range and offers new approaches to problem solving in deep-level mining. Some technological aspects of geotechnologies are presented through the results of modeling the new approach to blast-induced impact using smooth particle hydrodynamics. Some tentative research findings inspire continuing with the study.
期刊介绍:
The Journal reflects the current trends of development in fundamental and applied mining sciences. It publishes original articles on geomechanics and geoinformation science, investigation of relationships between global geodynamic processes and man-induced disasters, physical and mathematical modeling of rheological and wave processes in multiphase structural geological media, rock failure, analysis and synthesis of mechanisms, automatic machines, and robots, science of mining machines, creation of resource-saving and ecologically safe technologies of mineral mining, mine aerology and mine thermal physics, coal seam degassing, mechanisms for origination of spontaneous fires and methods for their extinction, mineral dressing, and bowel exploitation.