{"title":"Volume Computation for Meissner Polyhedra and Applications","authors":"Beniamin Bogosel","doi":"10.1007/s00454-024-00688-0","DOIUrl":null,"url":null,"abstract":"<p>The volume of a Meissner polyhedron is computed in terms of the lengths of its dual edges. This allows to reformulate the Meissner conjecture regarding constant width bodies with minimal volume as a series of explicit finite dimensional problems. A direct consequence is the minimality of the volume of Meissner tetrahedras among Meissner pyramids.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00688-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The volume of a Meissner polyhedron is computed in terms of the lengths of its dual edges. This allows to reformulate the Meissner conjecture regarding constant width bodies with minimal volume as a series of explicit finite dimensional problems. A direct consequence is the minimality of the volume of Meissner tetrahedras among Meissner pyramids.