Erdős–Szekeres-Type Problems in the Real Projective Plane

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Martin Balko, Manfred Scheucher, Pavel Valtr
{"title":"Erdős–Szekeres-Type Problems in the Real Projective Plane","authors":"Martin Balko, Manfred Scheucher, Pavel Valtr","doi":"10.1007/s00454-024-00691-5","DOIUrl":null,"url":null,"abstract":"<p>We consider point sets in the real projective plane <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erdős–Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erdős–Szekeres theorem about point sets in convex position in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span>, which was initiated by Harborth and Möller in 1994. The notion of convex position in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> agrees with the definition of convex sets introduced by Steinitz in 1913. For <span>\\(k \\ge 3\\)</span>, an <i>(affine) </i><i>k</i>-<i>hole</i> in a finite set <span>\\(S \\subseteq {\\mathbb {R}}^2\\)</span> is a set of <i>k</i> points from <i>S</i> in convex position with no point of <i>S</i> in the interior of their convex hull. After introducing a new notion of <i>k</i>-holes for points sets from <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span>, called <i>projective </i><i>k</i>-<i>holes</i>, we find arbitrarily large finite sets of points from <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> with no projective 8-holes, providing an analogue of a classical planar construction by Horton from 1983. We also prove that they contain only quadratically many projective <i>k</i>-holes for <span>\\(k \\le 7\\)</span>. On the other hand, we show that the number of <i>k</i>-holes can be substantially larger in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> than in <span>\\({\\mathbb {R}}^2\\)</span> by constructing, for every <span>\\(k \\in \\{3,\\dots ,6\\}\\)</span>, sets of <i>n</i> points from <span>\\({\\mathbb {R}}^2 \\subset {{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> with <span>\\(\\Omega (n^{3-3/5k})\\)</span> projective <i>k</i>-holes and only <span>\\(O(n^2)\\)</span> affine <i>k</i>-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> and about some algorithmic aspects. The study of extremal problems about point sets in <span>\\({{\\,\\mathrm{{\\mathbb {R}}{\\mathcal {P}}^2}\\,}}\\)</span> opens a new area of research, which we support by posing several open problems.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00691-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider point sets in the real projective plane \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erdős–Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erdős–Szekeres theorem about point sets in convex position in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\), which was initiated by Harborth and Möller in 1994. The notion of convex position in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) agrees with the definition of convex sets introduced by Steinitz in 1913. For \(k \ge 3\), an (affine) k-hole in a finite set \(S \subseteq {\mathbb {R}}^2\) is a set of k points from S in convex position with no point of S in the interior of their convex hull. After introducing a new notion of k-holes for points sets from \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\), called projective k-holes, we find arbitrarily large finite sets of points from \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) with no projective 8-holes, providing an analogue of a classical planar construction by Horton from 1983. We also prove that they contain only quadratically many projective k-holes for \(k \le 7\). On the other hand, we show that the number of k-holes can be substantially larger in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) than in \({\mathbb {R}}^2\) by constructing, for every \(k \in \{3,\dots ,6\}\), sets of n points from \({\mathbb {R}}^2 \subset {{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) with \(\Omega (n^{3-3/5k})\) projective k-holes and only \(O(n^2)\) affine k-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) and about some algorithmic aspects. The study of extremal problems about point sets in \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}\,}}\) opens a new area of research, which we support by posing several open problems.

Abstract Image

实射影平面中的厄尔多斯-塞克雷斯类型问题
我们考虑了实射影平面 ({{\\mathrm{{mathbb {R}}{{mathcal {P}}^2}}\} )中的点集,并探索了平面点集的经典极值问题在此背景下的变体,主要集中于厄尔多斯-斯泽克尔(Erdős-Szekeres)型问题。我们为 Erdős-Szekeres 定理的一个变体提供了关于 \({{\,\mathrm{\mathbb {R}}{\mathcal {P}}^2}\,}}) 中凸位置点集的渐近紧约束,该定理由 Harborth 和 Möller 于 1994 年提出。在 \({{\,\mathrm{{\mathbb {R}}{\mathcal {P}}^2}}\) 中凸位置的概念与 Steinitz 在 1913 年提出的凸集定义一致。对于(k )来说,有限集(S )中的(仿射)k 洞是 S 中处于凸位置的 k 个点的集合,在它们的凸壳内部没有 S 的点。在为来自 \({{\,\mathrm{{\mathbb {R}}\mathcal {P}}^2}\,}}) 的点集引入一个新的 k 洞概念(称为投影 k 洞)之后,我们发现了来自 \({{\,\mathrm{{\mathbb {R}}\mathcal {P}}^2}\,}} 的任意大的有限点集、\)中没有投影 8 孔的任意大的有限点集,这提供了霍顿(Horton)1983 年经典平面构造的类比。我们还证明了它们只包含 \(k \le 7\) 的二次k洞。另一方面,我们证明了对于每一个(k in \{3、\dots ,6\}\), sets of n points from \({\mathbb {R}}^2 \subset {{\,\mathrm{{\mathbb {R}}{mathcal {P}}^2}\,}}\) with \(\Omega (n^{3-3/5k})\) projective k-holes and only \(O(n^2)\) affine k-holes.最后但并非最不重要的是,我们还证明了其他几个结果,例如关于随机点集中的投影孔的({{\,\mathrm{{mathbb {R}}{mathcal {P}}^2}\}} )和一些算法方面的结果。关于点集的极值问题的研究开辟了一个新的研究领域,我们通过提出几个开放性问题来支持这一研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信