Postglacial environmental changes in the northwestern Barents Sea caused by meltwater outbursts

IF 3.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Dhanushka Devendra, Natalia Szymańska, Magdalena Łącka, Małgorzata Szymczak-Żyła, Magdalena Krajewska, Maciej M. Telesiński, Marek Zajączkowski
{"title":"Postglacial environmental changes in the northwestern Barents Sea caused by meltwater outbursts","authors":"Dhanushka Devendra, Natalia Szymańska, Magdalena Łącka, Małgorzata Szymczak-Żyła, Magdalena Krajewska, Maciej M. Telesiński, Marek Zajączkowski","doi":"10.5194/cp-2024-52","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The last deglaciation was marked by abrupt shifts between cold and warm states reflecting an integrated response to the gradually increasing summer insolation at northern latitudes, changing ocean circulation, and the retreat of the Northern Hemisphere ice sheets. In this study, we present new multiproxy reconstructions of water mass properties and sea surface characteristics from a sediment core from the northwestern Barents Sea (Kveithola) representing the last 14,700 years. Our reconstruction documents four sediment-laden meltwater pulses between 14,700 and 8,200 cal years BP based on biomarkers, stable isotopes, and sedimentological parameters. Deglacial processes primarily cause these meltwater pulses and are possibly supplemented with paleo-lake outbursts, paleo-tsunami currents, or a combination of at least one of these, are characterized by sudden drops in sea surface temperatures, increased sea ice formation, increased terrigenous supply, and a limited influence of Atlantic Water in the northwestern Barents Sea. The influence of the Storegga tsunami, which occurred around the 8,200 cal years BP cooling event likely reached and redistributed the sediment in Kveithola. Strong coarsening of the northwestern Barents shelf was observed after 3,500 years, which might be related to a stronger Atlantic Water inflow from the west across the bank leading to winnowing.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"14 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/cp-2024-52","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The last deglaciation was marked by abrupt shifts between cold and warm states reflecting an integrated response to the gradually increasing summer insolation at northern latitudes, changing ocean circulation, and the retreat of the Northern Hemisphere ice sheets. In this study, we present new multiproxy reconstructions of water mass properties and sea surface characteristics from a sediment core from the northwestern Barents Sea (Kveithola) representing the last 14,700 years. Our reconstruction documents four sediment-laden meltwater pulses between 14,700 and 8,200 cal years BP based on biomarkers, stable isotopes, and sedimentological parameters. Deglacial processes primarily cause these meltwater pulses and are possibly supplemented with paleo-lake outbursts, paleo-tsunami currents, or a combination of at least one of these, are characterized by sudden drops in sea surface temperatures, increased sea ice formation, increased terrigenous supply, and a limited influence of Atlantic Water in the northwestern Barents Sea. The influence of the Storegga tsunami, which occurred around the 8,200 cal years BP cooling event likely reached and redistributed the sediment in Kveithola. Strong coarsening of the northwestern Barents shelf was observed after 3,500 years, which might be related to a stronger Atlantic Water inflow from the west across the bank leading to winnowing.
融水爆发导致巴伦支海西北部冰川期后的环境变化
摘要上一次冰期的特点是冷态和暖态之间的突然转变,反映了北纬夏季日照逐渐增加、海洋环流变化和北半球冰盖退缩的综合反应。在这项研究中,我们从巴伦支海(Kveithola)西北部的一个沉积岩芯中,对过去 14,700 年的水团属性和海面特征进行了新的多代理重建。根据生物标志物、稳定同位素和沉积学参数,我们的重建工作记录了公元前14,700年至公元前8,200年之间的四次充满沉积物的融水脉冲。这些融水脉冲主要是由冰川过程引起的,可能还辅以古湖泊溃决、古海啸流或其中至少一种的组合,其特点是海面温度骤降、海冰形成增加、土著供应增加以及大西洋水对巴伦支海西北部的影响有限。斯托雷加海啸发生在公元前 8200 卡年降温事件前后,其影响很可能波及并重新分配了克韦索拉的沉积物。巴伦支海西北部陆架在 3500 年后出现了强烈的粗化现象,这可能与大西洋水从西部流入该陆岸导致绞碎有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Climate of The Past
Climate of The Past 地学-气象与大气科学
CiteScore
7.40
自引率
14.00%
发文量
120
审稿时长
4-8 weeks
期刊介绍: Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope. The main subject areas are the following: reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives; development and validation of new proxies, improvements of the precision and accuracy of proxy data; theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales; simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信