On Weighted Compactness of Commutators of Stein’s Square Functions Associated with Bochner-Riesz means

Qingying Xue, Chunmei Zhang
{"title":"On Weighted Compactness of Commutators of Stein’s Square Functions Associated with Bochner-Riesz means","authors":"Qingying Xue, Chunmei Zhang","doi":"10.1007/s12220-024-01775-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, our object of investigation is the commutators of the Stein’s square functions asssoicated with the Bochner-Riesz means of order <span>\\({\\uplambda }\\)</span> defined by </p><span>$$\\begin{aligned} G_{b,m}^{\\uplambda }f(x)=\\Big (\\int _0^\\infty \\Big |\\int _{{\\mathbb {R}}^n}(b(x)-b(y))^mK_t^{\\uplambda }(x-y)f(y)dy \\Big |^2\\frac{dt}{t}\\Big )^{\\frac{1}{2}}, \\end{aligned}$$</span><p>where <span>\\(\\widehat{K_t^{\\uplambda }}({\\upxi })=\\frac{|{\\upxi }|^2}{t^2}\\Big (1-\\frac{|{\\upxi }|^2}{t^2}\\Big )_+^{{\\uplambda }-1}\\)</span> and <span>\\(b\\in \\mathrm BMO(\\mathbb {R}^n)\\)</span>. We show that <span>\\(G_{b,m}^{\\uplambda }\\)</span> is a compact operator from <span>\\(L^p(w)\\)</span> to <span>\\(L^p(w)\\)</span> for <span>\\(1&lt;p&lt;\\infty \\)</span> and <span>\\({\\uplambda }&gt;\\frac{n+1}{2}\\)</span> whenever <span>\\(b\\in \\mathrm CMO({\\mathbb {R}^n})\\)</span>, where <span>\\(\\textrm{CMO}(\\mathbb {R}^n)\\)</span> is the closure of <span>\\(\\mathcal {C}_c^\\infty (\\mathbb {R}^n)\\)</span> in the <span>\\(\\textrm{BMO}(\\mathbb {R}^n)\\)</span> topology.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01775-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, our object of investigation is the commutators of the Stein’s square functions asssoicated with the Bochner-Riesz means of order \({\uplambda }\) defined by

$$\begin{aligned} G_{b,m}^{\uplambda }f(x)=\Big (\int _0^\infty \Big |\int _{{\mathbb {R}}^n}(b(x)-b(y))^mK_t^{\uplambda }(x-y)f(y)dy \Big |^2\frac{dt}{t}\Big )^{\frac{1}{2}}, \end{aligned}$$

where \(\widehat{K_t^{\uplambda }}({\upxi })=\frac{|{\upxi }|^2}{t^2}\Big (1-\frac{|{\upxi }|^2}{t^2}\Big )_+^{{\uplambda }-1}\) and \(b\in \mathrm BMO(\mathbb {R}^n)\). We show that \(G_{b,m}^{\uplambda }\) is a compact operator from \(L^p(w)\) to \(L^p(w)\) for \(1<p<\infty \) and \({\uplambda }>\frac{n+1}{2}\) whenever \(b\in \mathrm CMO({\mathbb {R}^n})\), where \(\textrm{CMO}(\mathbb {R}^n)\) is the closure of \(\mathcal {C}_c^\infty (\mathbb {R}^n)\) in the \(\textrm{BMO}(\mathbb {R}^n)\) topology.

论与波赫纳-里兹手段相关的斯坦因平方函数换元的加权紧凑性
在本文中,我们的研究对象是由 $$\begin{aligned} 定义的阶为 \({\uplambda }\) 的 Bochner-Riesz 方函数的换元。G_{b,m}^{\uplambda }f(x)=\Big (\int _0^\infty \Big |\int _{{\mathbb {R}}^n}(b(x)-b(y))^mK_t^{\uplambda }(x-y)f(y)dy \Big |^2\frac{dt}{t}\Big )^{frac{1}{2}}、\end{aligned}$$where \(widehat{K_t^{uplambda }}({\upxi })=\frac{|{\upxi }|^2}{t^2}\Big (1-\frac{|{\upxi }|^2}{t^2}\Big )_+^{\uplambda }-1}\) and\(b\in \mathrm BMO(\mathbb {R}^n)\).我们证明对于 (1<p<\infty \) 和 ({\uplambda }>;\(b在 CMO({\mathbb {R}^n})\)、其中 \(\textrm{CMO}(\mathbb {R}^n)\) 是 \(\textrm{BMO}(\mathbb {R}^n)\) 拓扑中 \(\mathcal {C}_c^\infty (\mathbb {R}^n)\) 的闭包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信