A Note on Almost Everywhere Convergence Along Tangential Curves to the Schrödinger Equation Initial Datum

Javier Minguillón
{"title":"A Note on Almost Everywhere Convergence Along Tangential Curves to the Schrödinger Equation Initial Datum","authors":"Javier Minguillón","doi":"10.1007/s12220-024-01755-x","DOIUrl":null,"url":null,"abstract":"<p>In this short note, we give an easy proof of the following result: for <span>\\( n\\ge 2, \\)</span> <span>\\(\\underset{t\\rightarrow 0}{\\lim }\\ \\,e^{it\\Delta }f\\left( x+\\gamma (t)\\right) = f(x) \\)</span> almost everywhere whenever <span>\\( \\gamma \\)</span> is an <span>\\( \\alpha \\)</span>-Hölder curve with <span>\\( \\frac{1}{2}\\le \\alpha \\le 1 \\)</span> and <span>\\( f\\in H^s({\\mathbb {R}}^n) \\)</span>, with <span>\\( s &gt; \\frac{n}{2(n+1)} \\)</span>. This is the optimal range of regularity up to the endpoint.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01755-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this short note, we give an easy proof of the following result: for \( n\ge 2, \) \(\underset{t\rightarrow 0}{\lim }\ \,e^{it\Delta }f\left( x+\gamma (t)\right) = f(x) \) almost everywhere whenever \( \gamma \) is an \( \alpha \)-Hölder curve with \( \frac{1}{2}\le \alpha \le 1 \) and \( f\in H^s({\mathbb {R}}^n) \), with \( s > \frac{n}{2(n+1)} \). This is the optimal range of regularity up to the endpoint.

关于沿切线曲线几乎处处收敛于薛定谔方程初始基的说明
在这个简短的注释中,我们给出了以下结果的简单证明:for ( n\ge 2, ) (underset{t\rightarrow 0}\lim }\、e^{it\Delta }f\left( x+\gamma (t)\right) = f(x))几乎无处不在,只要( ( (gamma))是一条具有( (frac{1}{2}le (alpha)le 1)的霍尔德曲线,并且( ( f\in H^s({\mathbb {R}}^n) ),具有( s >;\frac{n}{2(n+1)}\).这就是直到终点的最佳规则性范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信