{"title":"Constraining the variable generalized Chaplygin gas model in matter creation cosmology","authors":"Yogesh Bhardwaj, C P Singh","doi":"10.1088/1572-9494/ad58c2","DOIUrl":null,"url":null,"abstract":"We explore the variable generalized Chaplygin gas (VGCG) model in the theory of matter creation cosmology within the framework of a spatially homogeneous and isotropic flat Friedmann—Lemaître—Robertson—Walker space-time. Matter creation cosmology is based on reinterpretation of the energy–momentum tensor in Einstein’s field equations. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. The variable Chaplygin gas (VCG) is also studied as a particular solution. We use the Markov chain Monte Carlo method to constrain the free parameters of three models, namely, Lambda-Cold-Dark matter (ΛCDM), VGCG and VCG models with and without matter creation from the latest observational data from baryon acoustic oscillations, cosmic chronometer, type Ia supernovae (Pantheon) including gamma-ray bursts, quasars and the local measurement of <italic toggle=\"yes\">H</italic>\n<sub>0</sub> from R21 data. Two different combinations of dataset provide a fairly tight constraint on the parameters of the ΛCDM, VGCG and VCG models. The present values of various cosmological parameters are obtained, which are very close to the ΛCDM model. Furthermore, we perform stability analysis, Bayesian evidence analysis and information criteria analysis for these models through studying the sound speed, Bayes factor, and Akaike information criteria (AIC) and Bayesian information criteria (BIC) selection criteria. The values of sound speed for VGCG and VCG models shows that both the models are stable. According to AIC, it is observed that VGCG and VCG models with matter creation are supported considerably less by current observations, while BIC shows that these models are not favoured by observational data.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad58c2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the variable generalized Chaplygin gas (VGCG) model in the theory of matter creation cosmology within the framework of a spatially homogeneous and isotropic flat Friedmann—Lemaître—Robertson—Walker space-time. Matter creation cosmology is based on reinterpretation of the energy–momentum tensor in Einstein’s field equations. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. The variable Chaplygin gas (VCG) is also studied as a particular solution. We use the Markov chain Monte Carlo method to constrain the free parameters of three models, namely, Lambda-Cold-Dark matter (ΛCDM), VGCG and VCG models with and without matter creation from the latest observational data from baryon acoustic oscillations, cosmic chronometer, type Ia supernovae (Pantheon) including gamma-ray bursts, quasars and the local measurement of H0 from R21 data. Two different combinations of dataset provide a fairly tight constraint on the parameters of the ΛCDM, VGCG and VCG models. The present values of various cosmological parameters are obtained, which are very close to the ΛCDM model. Furthermore, we perform stability analysis, Bayesian evidence analysis and information criteria analysis for these models through studying the sound speed, Bayes factor, and Akaike information criteria (AIC) and Bayesian information criteria (BIC) selection criteria. The values of sound speed for VGCG and VCG models shows that both the models are stable. According to AIC, it is observed that VGCG and VCG models with matter creation are supported considerably less by current observations, while BIC shows that these models are not favoured by observational data.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.