Nano-Scale Manipulation of Single-Molecule Conformational Transition Through Vibrational Excitation

Weike Quan, Zihao Wang, Yueqing Shi, Kangkai Liang, Liya Bi, Hao Zhou, Zhiyuan Yin, Wanlu Li, Shaowei Li
{"title":"Nano-Scale Manipulation of Single-Molecule Conformational Transition Through Vibrational Excitation","authors":"Weike Quan, Zihao Wang, Yueqing Shi, Kangkai Liang, Liya Bi, Hao Zhou, Zhiyuan Yin, Wanlu Li, Shaowei Li","doi":"arxiv-2409.03195","DOIUrl":null,"url":null,"abstract":"On-demand control of molecular actions is a crucial step toward the\nrealization of single-molecule functional devices. Such a control can be\nachieved by manipulating interactions between individual molecules and their\nnanoscale environment. In this study, we induce and manipulate the\nconformational transition of a single molecular adsorbate by exciting its\nvibrations with tunneling electrons using scanning tunneling microscopy.\nSeveral transition pathways between two structural states of a pyrrolidine\nmolecule on a Cu(100) surface have been identified as being driven by different\nmolecular vibrations. Density functional theory simulations further determine\nthe nuclear motions of these vibrational modes. The introduction of tip-induced\nvan der Waals forces and intermolecular interactions allows for precise\nmanipulation of the molecule-environment interaction, which shifts the\nvibrational energies and alters the transition probability through different\nchannels between the two structural states. This work reveals how molecular\nconformational transitions can be modulated by external force fields in a\ntunable nano-cavity, highlighting the potential to deliberately engineer\nmolecule-environment interactions for specific molecular functions.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On-demand control of molecular actions is a crucial step toward the realization of single-molecule functional devices. Such a control can be achieved by manipulating interactions between individual molecules and their nanoscale environment. In this study, we induce and manipulate the conformational transition of a single molecular adsorbate by exciting its vibrations with tunneling electrons using scanning tunneling microscopy. Several transition pathways between two structural states of a pyrrolidine molecule on a Cu(100) surface have been identified as being driven by different molecular vibrations. Density functional theory simulations further determine the nuclear motions of these vibrational modes. The introduction of tip-induced van der Waals forces and intermolecular interactions allows for precise manipulation of the molecule-environment interaction, which shifts the vibrational energies and alters the transition probability through different channels between the two structural states. This work reveals how molecular conformational transitions can be modulated by external force fields in a tunable nano-cavity, highlighting the potential to deliberately engineer molecule-environment interactions for specific molecular functions.
通过振动激发在纳米尺度上操纵单分子构象转变
按需控制分子作用是实现单分子功能设备自动化的关键一步。这种控制可以通过操纵单个分子与其纳米尺度环境之间的相互作用来实现。在这项研究中,我们利用扫描隧道显微镜,用隧道电子激发单个分子吸附剂的振动,从而诱导和操纵其构象转变。在铜(100)表面上,吡咯烷分子的两种结构状态之间的几种转变途径已被确定为由不同的分子振动驱动。密度泛函理论模拟进一步确定了这些振动模式的核运动。通过引入尖端诱导范德华力和分子间相互作用,可以对分子与环境的相互作用进行精确操纵,从而改变振动能量,并通过两种结构状态之间的不同通道改变转变概率。这项研究揭示了分子构象转变如何在无法控制的纳米空腔中受到外部力场的调制,凸显了刻意设计分子与环境相互作用以实现特定分子功能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信