WenShan Xu, Ri-Gui Zhou, YaoChong Li and XiaoXue Zhang
{"title":"Towards an efficient variational quantum algorithm for solving linear equations","authors":"WenShan Xu, Ri-Gui Zhou, YaoChong Li and XiaoXue Zhang","doi":"10.1088/1572-9494/ad597d","DOIUrl":null,"url":null,"abstract":"Variational quantum algorithms are promising methods with the greatest potential to achieve quantum advantage, widely employed in the era of noisy intermediate-scale quantum computing. This study presents an advanced variational hybrid algorithm (EVQLSE) that leverages both quantum and classical computing paradigms to address the solution of linear equation systems. Initially, an innovative loss function is proposed, drawing inspiration from the similarity measure between two quantum states. This function exhibits a substantial improvement in computational complexity when benchmarked against the variational quantum linear solver. Subsequently, a specialized parameterized quantum circuit structure is presented for small-scale linear systems, which exhibits powerful expressive capabilities. Through rigorous numerical analysis, the expressiveness of this circuit structure is quantitatively assessed using a variational quantum regression algorithm, and it obtained the best score compared to the others. Moreover, the expansion in system size is accompanied by an increase in the number of parameters, placing considerable strain on the training process for the algorithm. To address this challenge, an optimization strategy known as quantum parameter sharing is introduced, which proficiently minimizes parameter volume while adhering to exacting precision standards. Finally, EVQLSE is successfully implemented on a quantum computing platform provided by IBM for the resolution of large-scale problems characterized by a dimensionality of 220.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"35 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad597d","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Variational quantum algorithms are promising methods with the greatest potential to achieve quantum advantage, widely employed in the era of noisy intermediate-scale quantum computing. This study presents an advanced variational hybrid algorithm (EVQLSE) that leverages both quantum and classical computing paradigms to address the solution of linear equation systems. Initially, an innovative loss function is proposed, drawing inspiration from the similarity measure between two quantum states. This function exhibits a substantial improvement in computational complexity when benchmarked against the variational quantum linear solver. Subsequently, a specialized parameterized quantum circuit structure is presented for small-scale linear systems, which exhibits powerful expressive capabilities. Through rigorous numerical analysis, the expressiveness of this circuit structure is quantitatively assessed using a variational quantum regression algorithm, and it obtained the best score compared to the others. Moreover, the expansion in system size is accompanied by an increase in the number of parameters, placing considerable strain on the training process for the algorithm. To address this challenge, an optimization strategy known as quantum parameter sharing is introduced, which proficiently minimizes parameter volume while adhering to exacting precision standards. Finally, EVQLSE is successfully implemented on a quantum computing platform provided by IBM for the resolution of large-scale problems characterized by a dimensionality of 220.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.