A photochemical PHO network for hydrogen-dominated exoplanet atmospheres

Elspeth K. H. Lee, Shang-Min Tsai, Julianne I. Moses, John M. C. Plane, Channon Visscher, Stephen J. Klippenstein
{"title":"A photochemical PHO network for hydrogen-dominated exoplanet atmospheres","authors":"Elspeth K. H. Lee, Shang-Min Tsai, Julianne I. Moses, John M. C. Plane, Channon Visscher, Stephen J. Klippenstein","doi":"arxiv-2409.06802","DOIUrl":null,"url":null,"abstract":"Due to the detection of phosphine PH3 in the Solar System gas giants Jupiter\nand Saturn, PH3 has long been suggested to be detectable in exosolar substellar\natmospheres too. However, to date, a direct detection of phosphine has proven\nto be elusive in exoplanet atmosphere surveys. We construct an updated\nphosphorus-hydrogen-oxygen (PHO) photochemical network suitable for simulation\nof gas giant hydrogen-dominated atmospheres. Using this network, we examine PHO\nphotochemistry in hot Jupiter and warm Neptune exoplanet atmospheres at Solar\nand enriched metallicities. Our results show for HD 189733b-like hot Jupiters\nthat HOPO, PO and P2 are typically the dominant P carriers at pressures\nimportant for transit and emission spectra, rather than PH3. For GJ1214b-like\nwarm Neptune atmospheres our results suggest that at Solar metallicity PH3 is\ndominant in the absence of photochemistry, but is generally not in high\nabundance for all other chemical environments. At 10 and 100 times Solar, small\noxygenated phosphorus molecules such as HOPO and PO dominate for both\nthermochemical and photochemical simulations. The network is able to reproduce\nwell the observed PH3 abundances on Jupiter and Saturn. Despite progress in\nimproving the accuracy of the PHO network, large portions of the reaction rate\ndata remain with approximate, uncertain or missing values, which could change\nthe conclusions of the current study significantly. Improving understanding of\nthe kinetics of phosphorus-bearing chemical reactions will be a key undertaking\nfor astronomers aiming to detect phosphine and other phosphorus species in both\nrocky and gaseous exoplanetary atmospheres in the near future.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the detection of phosphine PH3 in the Solar System gas giants Jupiter and Saturn, PH3 has long been suggested to be detectable in exosolar substellar atmospheres too. However, to date, a direct detection of phosphine has proven to be elusive in exoplanet atmosphere surveys. We construct an updated phosphorus-hydrogen-oxygen (PHO) photochemical network suitable for simulation of gas giant hydrogen-dominated atmospheres. Using this network, we examine PHO photochemistry in hot Jupiter and warm Neptune exoplanet atmospheres at Solar and enriched metallicities. Our results show for HD 189733b-like hot Jupiters that HOPO, PO and P2 are typically the dominant P carriers at pressures important for transit and emission spectra, rather than PH3. For GJ1214b-like warm Neptune atmospheres our results suggest that at Solar metallicity PH3 is dominant in the absence of photochemistry, but is generally not in high abundance for all other chemical environments. At 10 and 100 times Solar, small oxygenated phosphorus molecules such as HOPO and PO dominate for both thermochemical and photochemical simulations. The network is able to reproduce well the observed PH3 abundances on Jupiter and Saturn. Despite progress in improving the accuracy of the PHO network, large portions of the reaction rate data remain with approximate, uncertain or missing values, which could change the conclusions of the current study significantly. Improving understanding of the kinetics of phosphorus-bearing chemical reactions will be a key undertaking for astronomers aiming to detect phosphine and other phosphorus species in both rocky and gaseous exoplanetary atmospheres in the near future.
氢主导系外行星大气的光化学 PHO 网络
由于在太阳系气态巨行星木星和土星中探测到了膦PH3,人们一直认为在太阳系外的亚恒星大气层中也能探测到膦PH3。然而,迄今为止,在系外行星大气勘测中还无法直接探测到磷化氢。我们构建了一个更新的磷-氢-氧(PHO)光化学网络,适用于模拟气态巨行星以氢为主的大气层。利用这个网络,我们研究了热木星和暖海王星系外行星大气在太阳金属性和富金属性下的PHO光化学。我们的研究结果表明,对于类似于HD 189733b的热木星来说,HOPO、PO和P2通常是在对过境和发射光谱非常重要的压力下的主要P载流子,而不是PH3。对于类似 GJ1214b 的暖海王星大气,我们的研究结果表明,在太阳金属性条件下,PH3 在没有光化学作用的情况下占主导地位,但在所有其他化学环境下,PH3 通常并不富集。在太阳金属度 10 倍和 100 倍时,热化学模拟和光化学模拟均以 HOPO 和 PO 等小氧合磷分子为主。该网络能够很好地再现木星和土星上观测到的 PH3 丰度。尽管在提高 PHO 网络的准确性方面取得了进展,但大部分反应额定值仍然是近似值、不确定值或缺失值,这可能会极大地改变当前研究的结论。天文学家希望在不久的将来探测到岩石和气态系外行星大气中的磷和其他磷物种,而提高对含磷化学反应动力学的认识将是一项关键工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信