Memory traces ruled by surface-biased REDOX reactions

Ana Luiza Costa Silva, Rafael Schio Wengenroth Silva, Lucas Augusto Moisés, Adenilson José Chiquito, Marcio Peron Franco de Godoy, Fabian Hartmann, Victor Lopez-Richard
{"title":"Memory traces ruled by surface-biased REDOX reactions","authors":"Ana Luiza Costa Silva, Rafael Schio Wengenroth Silva, Lucas Augusto Moisés, Adenilson José Chiquito, Marcio Peron Franco de Godoy, Fabian Hartmann, Victor Lopez-Richard","doi":"arxiv-2409.07299","DOIUrl":null,"url":null,"abstract":"Gas and moisture sensing devices leveraging the resistive switching effect in\ntransition metal oxide memristors promise to revolutionize next-generation,\nnano-scaled, cost-effective, and environmentally sustainable sensor solutions.\nThese sensors encode readouts in resistance state changes based on gas\nconcentration, yet their nonlinear current-voltage characteristics offer richer\ndynamics, capturing detailed information about REDOX reactions and surface\nkinetics. Traditional vertical devices fail to fully exploit this complexity.\nThis study demonstrates planar resistive switching devices, moving beyond the\nButler-Volmer model. A systematic investigation of the electrochemical\nprocesses in Na-doped ZnO with lateral planar contacts reveals intricate\npatterns resulting from REDOX reactions on the device surface. When combined\nwith advanced algorithms for pattern recognition, allow the analysis of complex\nswitching patterns, including crossings, loop directions, and resistance\nvalues, providing unprecedented insights for next-generation complex sensors.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gas and moisture sensing devices leveraging the resistive switching effect in transition metal oxide memristors promise to revolutionize next-generation, nano-scaled, cost-effective, and environmentally sustainable sensor solutions. These sensors encode readouts in resistance state changes based on gas concentration, yet their nonlinear current-voltage characteristics offer richer dynamics, capturing detailed information about REDOX reactions and surface kinetics. Traditional vertical devices fail to fully exploit this complexity. This study demonstrates planar resistive switching devices, moving beyond the Butler-Volmer model. A systematic investigation of the electrochemical processes in Na-doped ZnO with lateral planar contacts reveals intricate patterns resulting from REDOX reactions on the device surface. When combined with advanced algorithms for pattern recognition, allow the analysis of complex switching patterns, including crossings, loop directions, and resistance values, providing unprecedented insights for next-generation complex sensors.
记忆痕迹由表面偏置的 REDOX 反应决定
利用过渡金属氧化物忆阻器内部的电阻开关效应的气体和湿度传感设备有望彻底改变下一代纳米级、经济高效和环境可持续的传感器解决方案。这些传感器根据气体浓度对电阻状态变化进行编码读出,但其非线性电流-电压特性提供了丰富的动力学特性,可捕捉到有关 REDOX 反应和表面动力学的详细信息。本研究展示了平面电阻开关器件,超越了巴特勒-沃尔默模型。通过对具有横向平面触点的掺钠氧化锌的电化学过程进行系统研究,发现了器件表面的 REDOX 反应所产生的错综复杂的模式。结合先进的模式识别算法,可以分析复杂的开关模式,包括交叉、环路方向和电阻值,为下一代复杂传感器提供前所未有的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信