Generating coupled cluster code for modern distributed memory tensor software

Jan Brandejs, Johann Pototschnig, Trond Saue
{"title":"Generating coupled cluster code for modern distributed memory tensor software","authors":"Jan Brandejs, Johann Pototschnig, Trond Saue","doi":"arxiv-2409.06759","DOIUrl":null,"url":null,"abstract":"Scientific groups are struggling to adapt their codes to quickly-developing\nGPU-based HPC platforms. The domain of distributed coupled cluster (CC)\ncalculations is not an exception. Moreover, our applications to tiny QED\neffects require higher-order CC which include thousands of tensor contractions,\nwhich makes automatic treatment imperative. The challenge is to allow efficient\nimplementation by capturing key symmetries of the problem, while retaining the\nabstraction from the hardware. We present the tensor programming framework\ntenpi, which seeks to find this balance. It features a python library user\ninterface, global optimization of intermediates, a visualization module and\nFortran code generator that bridges the DIRAC package for relativistic\nmolecular calculations to tensor contraction libraries. tenpi brings\nhigher-order CC functionality to the massively parallel module of DIRAC. The\narchitecture and design decision schemes are accompanied by benchmarks and by\nfirst production calculations on Summit, Frontier and LUMI along with\nstate-of-the-art of tensor contraction software.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific groups are struggling to adapt their codes to quickly-developing GPU-based HPC platforms. The domain of distributed coupled cluster (CC) calculations is not an exception. Moreover, our applications to tiny QED effects require higher-order CC which include thousands of tensor contractions, which makes automatic treatment imperative. The challenge is to allow efficient implementation by capturing key symmetries of the problem, while retaining the abstraction from the hardware. We present the tensor programming framework tenpi, which seeks to find this balance. It features a python library user interface, global optimization of intermediates, a visualization module and Fortran code generator that bridges the DIRAC package for relativistic molecular calculations to tensor contraction libraries. tenpi brings higher-order CC functionality to the massively parallel module of DIRAC. The architecture and design decision schemes are accompanied by benchmarks and by first production calculations on Summit, Frontier and LUMI along with state-of-the-art of tensor contraction software.
为现代分布式内存张量软件生成耦合集群代码
科学团体正努力使其代码适应快速发展的基于 GPU 的高性能计算平台。分布式耦合集群(CC)计算领域也不例外。此外,我们对微小 QEDeffects 的应用需要高阶 CC,其中包括成千上万的张量收缩,这使得自动处理势在必行。我们面临的挑战是,如何通过捕捉问题的关键对称性来高效实现,同时保留对硬件的抽象。我们提出了张量编程框架tenpi,试图找到这种平衡。Tenpi 为 DIRAC 的大规模并行模块带来了高阶 CC 功能。架构和设计决策方案附有基准测试,以及 Summit、Frontier 和 LUMI 上的首次生产计算和最先进的张量收缩软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信