Asymmetric kernel density estimation for biased data

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Yoshihide Kakizawa
{"title":"Asymmetric kernel density estimation for biased data","authors":"Yoshihide Kakizawa","doi":"10.1007/s42952-024-00280-5","DOIUrl":null,"url":null,"abstract":"<p>Nonparametric density estimation for nonnegative data is considered in a situation where a random sample is not directly available but the data are instead observed from the length-biased sampling. Due to the so-called boundary bias problem of the location-scale kernel, the approach in this paper is an application of asymmetric kernel. Some nonparametric density estimators are proposed. The mean integrated squared error, strong consistency, and asymptotic normality of the estimators are investigated. Simulation studies and a real data analysis illustrate the estimators.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"312 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00280-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonparametric density estimation for nonnegative data is considered in a situation where a random sample is not directly available but the data are instead observed from the length-biased sampling. Due to the so-called boundary bias problem of the location-scale kernel, the approach in this paper is an application of asymmetric kernel. Some nonparametric density estimators are proposed. The mean integrated squared error, strong consistency, and asymptotic normality of the estimators are investigated. Simulation studies and a real data analysis illustrate the estimators.

Abstract Image

偏差数据的非对称核密度估计
本文考虑的是非负数据的非参数密度估计,这种情况下无法直接获得随机样本,而是通过长度偏差抽样观察数据。由于位置尺度核存在所谓的边界偏差问题,本文的方法是非对称核的应用。本文提出了一些非参数密度估计量。研究了估计器的平均综合平方误差、强一致性和渐近正态性。模拟研究和实际数据分析说明了这些估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Korean Statistical Society
Journal of the Korean Statistical Society 数学-统计学与概率论
CiteScore
1.30
自引率
0.00%
发文量
37
审稿时长
3 months
期刊介绍: The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信