{"title":"Asymmetric kernel density estimation for biased data","authors":"Yoshihide Kakizawa","doi":"10.1007/s42952-024-00280-5","DOIUrl":null,"url":null,"abstract":"<p>Nonparametric density estimation for nonnegative data is considered in a situation where a random sample is not directly available but the data are instead observed from the length-biased sampling. Due to the so-called boundary bias problem of the location-scale kernel, the approach in this paper is an application of asymmetric kernel. Some nonparametric density estimators are proposed. The mean integrated squared error, strong consistency, and asymptotic normality of the estimators are investigated. Simulation studies and a real data analysis illustrate the estimators.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"312 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00280-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonparametric density estimation for nonnegative data is considered in a situation where a random sample is not directly available but the data are instead observed from the length-biased sampling. Due to the so-called boundary bias problem of the location-scale kernel, the approach in this paper is an application of asymmetric kernel. Some nonparametric density estimators are proposed. The mean integrated squared error, strong consistency, and asymptotic normality of the estimators are investigated. Simulation studies and a real data analysis illustrate the estimators.
期刊介绍:
The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.