Application of WENO-Schemes for Modelling Shock-Wave Processes

Q3 Mathematics
F. A. Belolutskiy, V. V. Shepelev, S. V. Fortova
{"title":"Application of WENO-Schemes for Modelling Shock-Wave Processes","authors":"F. A. Belolutskiy, V. V. Shepelev, S. V. Fortova","doi":"10.1134/s2070048224700200","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper analyzes weighted essentially non-oscillatory (WENO)-schemes for the solution of one-dimensional Euler equations with a Mie−Grüneisen type of equation of state. The least dissipative and oscillatory modifications of WENO-schemes in characteristic variables with a monotonicity-preserving (MP) limiter are presented. A modified scheme, MP-WENO-SM, is developed, demonstrating the smallest amplitude of oscillations in the solution of the test problems with discontinuous initial data.</p>","PeriodicalId":38050,"journal":{"name":"Mathematical Models and Computer Simulations","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Computer Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2070048224700200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes weighted essentially non-oscillatory (WENO)-schemes for the solution of one-dimensional Euler equations with a Mie−Grüneisen type of equation of state. The least dissipative and oscillatory modifications of WENO-schemes in characteristic variables with a monotonicity-preserving (MP) limiter are presented. A modified scheme, MP-WENO-SM, is developed, demonstrating the smallest amplitude of oscillations in the solution of the test problems with discontinuous initial data.

Abstract Image

应用 WENO 仿真模拟冲击波过程
摘要 本文分析了求解具有米-格吕尼森类型状态方程的一维欧拉方程的加权本质非振荡(WENO)方案。介绍了带有单调性保留(MP)限制器的特征变量 WENO 方案的最小耗散和振荡修正。在解决初始数据不连续的测试问题时,MP-WENO-SM 方案的振荡幅度最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Models and Computer Simulations
Mathematical Models and Computer Simulations Mathematics-Computational Mathematics
CiteScore
1.20
自引率
0.00%
发文量
99
期刊介绍: Mathematical Models and Computer Simulations  is a journal that publishes high-quality and original articles at the forefront of development of mathematical models, numerical methods, computer-assisted studies in science and engineering with the potential for impact across the sciences, and construction of massively parallel codes for supercomputers. The problem-oriented papers are devoted to various problems including industrial mathematics, numerical simulation in multiscale and multiphysics, materials science, chemistry, economics, social, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信