The Classical Boundary Blow-Up Solutions for a Class of Gaussian Curvature Equations

Haitao Wan
{"title":"The Classical Boundary Blow-Up Solutions for a Class of Gaussian Curvature Equations","authors":"Haitao Wan","doi":"10.1007/s12220-024-01785-5","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the Gaussian curvature problem </p><span>$$\\begin{aligned} \\frac{\\hbox {det}(D^{2}u)}{(1+|\\nabla u|^{2})^{\\frac{N+2}{2}}}=b(x)f(u)g(|\\nabla u|)\\;\\hbox {in}\\;\\Omega ,\\,u=+\\infty \\;\\hbox {on}\\;\\partial \\Omega , \\end{aligned}$$</span><p>where <span>\\(\\Omega \\)</span> is a bounded smooth uniformly convex domain in <span>\\({\\mathbb {R}}^{N}\\)</span> with <span>\\(N\\ge 2\\)</span>, <span>\\(b\\in \\mathrm C^{\\infty }(\\Omega )\\)</span> is positive in <span>\\(\\Omega \\)</span> and may be singular or vanish on <span>\\(\\partial \\Omega \\)</span>, <span>\\(f\\in C^{\\infty }[0, +\\infty )\\)</span> (or <span>\\(f\\in C^{\\infty }({\\mathbb {R}})\\)</span>) is positive and increasing on <span>\\([0, +\\infty )\\)</span> <span>\\((\\hbox {or } {\\mathbb {R}})\\)</span>, <span>\\(g\\in C^{\\infty }[0, +\\infty )\\)</span> is positive on <span>\\([0, +\\infty )\\)</span>. We first establish the existence and global estimates of <span>\\(C^{\\infty }\\)</span>-strictly convex solutions to this problem by constructing some fine coupling (limit) structures on <i>f</i> and <i>g</i>. Our results (Theorems 2.1–2.3) clarify the influence of properties of <i>b</i> (on the boundary <span>\\(\\partial \\Omega \\)</span>) on the existence and global estimates, and reveal the relationship between the solutions of the above problem and some corresponding problems (some details see page 6–7). Then, the nonexistence of convex solutions and strictly convex solutions are also obtained (see Theorems 2.4 and C). Finally, we study the principal expansions of strictly convex solutions near <span>\\(\\partial \\Omega \\)</span> by analyzing some coupling structure and using the Karamata regular and rapid variation theories.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01785-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the Gaussian curvature problem

$$\begin{aligned} \frac{\hbox {det}(D^{2}u)}{(1+|\nabla u|^{2})^{\frac{N+2}{2}}}=b(x)f(u)g(|\nabla u|)\;\hbox {in}\;\Omega ,\,u=+\infty \;\hbox {on}\;\partial \Omega , \end{aligned}$$

where \(\Omega \) is a bounded smooth uniformly convex domain in \({\mathbb {R}}^{N}\) with \(N\ge 2\), \(b\in \mathrm C^{\infty }(\Omega )\) is positive in \(\Omega \) and may be singular or vanish on \(\partial \Omega \), \(f\in C^{\infty }[0, +\infty )\) (or \(f\in C^{\infty }({\mathbb {R}})\)) is positive and increasing on \([0, +\infty )\) \((\hbox {or } {\mathbb {R}})\), \(g\in C^{\infty }[0, +\infty )\) is positive on \([0, +\infty )\). We first establish the existence and global estimates of \(C^{\infty }\)-strictly convex solutions to this problem by constructing some fine coupling (limit) structures on f and g. Our results (Theorems 2.1–2.3) clarify the influence of properties of b (on the boundary \(\partial \Omega \)) on the existence and global estimates, and reveal the relationship between the solutions of the above problem and some corresponding problems (some details see page 6–7). Then, the nonexistence of convex solutions and strictly convex solutions are also obtained (see Theorems 2.4 and C). Finally, we study the principal expansions of strictly convex solutions near \(\partial \Omega \) by analyzing some coupling structure and using the Karamata regular and rapid variation theories.

一类高斯曲率方程的经典边界炸裂解
在本文中,我们将考虑高斯曲率问题 $$\begin{aligned}\frac{hbox {det}(D^{2}u)}{(1+|\nabla u|^{2})^{\frac{N+2}{2}}=b(x)f(u)g(|\nabla u|)\;\hbox {in\;\Omega ,\,u=+\infty \;\hbox {on}\;\其中,\(\Omega \)是({\mathbb {R}}^{N}\) 中一个有界的光滑均匀凸域,带有\(N\ge 2\)、\b\in C^{infty }(\Omega )\) 在\(\Omega\)中是正值,在\(\partial \Omega \)上可能是奇异的或消失的、\f\in C^{infty }[0, +\infty )(或 f\in C^{infty }({\mathbb {R}})/) 在 ([0, +\infty ))上是正的并且递增的。\((\hbox{or}{\mathbb{R}})\)、\(g\in C^{infty }[0, +\infty )\)在\([0, +\infty )\)上是正的。我们的结果(定理 2.1-2.3)阐明了 b 的性质(在边界上)对存在性和全局估计的影响,并揭示了上述问题的解与一些相应问题之间的关系(详见第 6-7 页)。然后,还得到了凸解和严格凸解的不存在性(见定理 2.4 和 C)。最后,我们通过分析一些耦合结构,利用卡拉马塔正则和快速变化理论,研究了严格凸解在\(\partial \Omega \)附近的主展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信