Bilinear Decompositions for Products of Orlicz–Hardy and Orlicz–Campanato Spaces

Chenglong Fang, Liguang Liu
{"title":"Bilinear Decompositions for Products of Orlicz–Hardy and Orlicz–Campanato Spaces","authors":"Chenglong Fang, Liguang Liu","doi":"10.1007/s12220-024-01777-5","DOIUrl":null,"url":null,"abstract":"<p>For an Orlicz function <span>\\(\\varphi \\)</span> with critical lower type <span>\\(i(\\varphi )\\in (0, 1)\\)</span> and upper type <span>\\(I(\\varphi )\\in (0,1)\\)</span>, set <span>\\(m(\\varphi )=\\lfloor n(1/i(\\varphi )-1)\\rfloor \\)</span>. In this paper, the authors establish bilinear decomposition for the product of the Orlicz–Hardy space <span>\\(H^{\\varphi }({\\mathbb {R}}^{n})\\)</span> and its dual space—the Orlicz–Campanato space <span>\\({\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span>. In particular, the authors prove that the product (in the sense of distributions) of <span>\\(f\\in H^{\\varphi }({\\mathbb {R}}^{n})\\)</span> and <span>\\(g\\in {\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span> can be decomposed into the sum of <i>S</i>(<i>f</i>, <i>g</i>) and <i>T</i>(<i>f</i>, <i>g</i>), where <i>S</i> is a bilinear operator bounded from <span>\\(H^{\\varphi }({\\mathbb {R}}^{n})\\times {\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span> to <span>\\(L^{1}({\\mathbb {R}}^{n})\\)</span> and <i>T</i> is another bilinear operator bounded from <span>\\(H^{\\varphi }({\\mathbb {R}}^{n})\\times {\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span> to the Musielak–Orlicz–Hardy space <span>\\(H^{\\Phi }({\\mathbb {R}}^{n})\\)</span>, with <span>\\(\\Phi \\)</span> being a Musielak–Orlicz function determined by <span>\\(\\varphi \\)</span>. The bilinear decomposition is sharp in the following sense: any vector space <span>\\({\\mathcal {Y}}\\subset H^{\\Phi }({\\mathbb {R}}^{n})\\)</span> that adapted to the above bilinear decomposition should satisfy <span>\\( L^\\infty ({\\mathbb {R}}^{n})\\cap {\\mathcal {Y}}^{*}=L^\\infty ({\\mathbb {R}}^{n})\\cap (H^{\\Phi }({\\mathbb {R}}^{n}))^{*} \\)</span>. Indeed, <span>\\(L^\\infty ({\\mathbb {R}}^{n})\\cap (H^{\\Phi }({\\mathbb {R}}^{n}))^{*}\\)</span> is just the multiplier space of <span>\\({\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span>. As applications, the authors obtain not only a priori estimate of the div-curl product involving the space <span>\\(H^{\\Phi }({\\mathbb {R}}^{n})\\)</span>, but also the boundedness of the Calderón–Zygmund commutator [<i>b</i>, <i>T</i>] from the Hardy type space <span>\\(H^{\\varphi }_{b}({\\mathbb {R}}^{n})\\)</span> to <span>\\(L^{1}({\\mathbb {R}}^{n})\\)</span> or <span>\\(H^{1}({\\mathbb {R}}^{n})\\)</span> under <span>\\(b\\in {\\mathfrak {L}}_{\\varphi }({\\mathbb {R}}^{n})\\)</span>, <span>\\(m(\\varphi )=0\\)</span> and suitable cancellation conditions of <i>T</i>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01777-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For an Orlicz function \(\varphi \) with critical lower type \(i(\varphi )\in (0, 1)\) and upper type \(I(\varphi )\in (0,1)\), set \(m(\varphi )=\lfloor n(1/i(\varphi )-1)\rfloor \). In this paper, the authors establish bilinear decomposition for the product of the Orlicz–Hardy space \(H^{\varphi }({\mathbb {R}}^{n})\) and its dual space—the Orlicz–Campanato space \({\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\). In particular, the authors prove that the product (in the sense of distributions) of \(f\in H^{\varphi }({\mathbb {R}}^{n})\) and \(g\in {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) can be decomposed into the sum of S(fg) and T(fg), where S is a bilinear operator bounded from \(H^{\varphi }({\mathbb {R}}^{n})\times {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) to \(L^{1}({\mathbb {R}}^{n})\) and T is another bilinear operator bounded from \(H^{\varphi }({\mathbb {R}}^{n})\times {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) to the Musielak–Orlicz–Hardy space \(H^{\Phi }({\mathbb {R}}^{n})\), with \(\Phi \) being a Musielak–Orlicz function determined by \(\varphi \). The bilinear decomposition is sharp in the following sense: any vector space \({\mathcal {Y}}\subset H^{\Phi }({\mathbb {R}}^{n})\) that adapted to the above bilinear decomposition should satisfy \( L^\infty ({\mathbb {R}}^{n})\cap {\mathcal {Y}}^{*}=L^\infty ({\mathbb {R}}^{n})\cap (H^{\Phi }({\mathbb {R}}^{n}))^{*} \). Indeed, \(L^\infty ({\mathbb {R}}^{n})\cap (H^{\Phi }({\mathbb {R}}^{n}))^{*}\) is just the multiplier space of \({\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\). As applications, the authors obtain not only a priori estimate of the div-curl product involving the space \(H^{\Phi }({\mathbb {R}}^{n})\), but also the boundedness of the Calderón–Zygmund commutator [bT] from the Hardy type space \(H^{\varphi }_{b}({\mathbb {R}}^{n})\) to \(L^{1}({\mathbb {R}}^{n})\) or \(H^{1}({\mathbb {R}}^{n})\) under \(b\in {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\), \(m(\varphi )=0\) and suitable cancellation conditions of T.

奥利兹-哈代和奥利兹-坎帕纳托空间乘积的双线性分解
对于具有临界下型(i(\varphi)\in (0, 1))和上型(I(\varphi)\in (0,1))的奥利兹函数\(\varphi),设\(m(\varphi )=\lfloor n(1/i(\varphi )-1)\rfloor\).在本文中,作者建立了奥利兹-哈代空间(Orlicz-Hardy space)\(H^{\varphi }({\mathbb {R}}^{n})\) 和它的对偶空间--奥利兹-坎帕纳托空间(Orlicz-Campanato space)\({\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) 的乘积的双线性分解。特别是,作者证明了 \(f\in H^{\varphi }({\mathbb {R}^{n})\) 和 \(g\in {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\) 的乘积(在分布的意义上)可以分解为 S(f, g) 和 T(f, g) 的和、)其中 S 是一个从 \(H^{\varphi }({\mathbb {R}}^{n})imes {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\ 到 \(L^{1}({\mathbb {R}}^{n})\ 的双线性算子,T 是另一个从 \(H^{\varphi }({\mathbb {R}}^{n})\ 到 \(L^{1}({\mathbb {R}}^{n})\ 的双线性算子。从 \(H^{\varphi }({\mathbb {R}}^{n})times {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\ 到 Musielak-Orlicz-Hardy 空间的有界算子、(\Phi)是由\(\varphi\)决定的穆西拉克-奥利兹函数。双线性分解在以下意义上是尖锐的:任何适应上述双线性分解的向量空间都应该满足( L^\infty ({\mathbb {R}}^{n})\cap {\mathcal {Y}}^{*}=L^\infty ({\mathbb {R}}^{n})\cap (H^{\Phi }({\mathbb {R}}^{n}))^{*}.\).事实上,\(L^\infty ({\mathbb {R}}^{n})\cap (H^{\Phi }({\mathbb {R}}^{n}))^{*}\) 只是 \({\mathfrak {L}_{\varphi }({\mathbb {R}}^{n})\) 的乘数空间。)作为应用,作者不仅得到了涉及空间 \(H^{\Phi }({\mathbb {R}}^{n})\ 的 div-curl 积的先验估计,还得到了 Calderón-Zygmund 换元[b. T]的有界性、T] from the Hardy type space \(H^{\varphi }_{b}({\mathbb {R}}^{n})\ to \(L^{1}({\mathbb {R}}^{n})\) or \(H^{1}({\mathbb {R}}^{n})\) under \(b\in {\mathfrak {L}}_{\varphi }({\mathbb {R}}^{n})\)、\(m(\varphi)=0\)和 T 的适当取消条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信