On representations and topological aspects of positive maps on non-unital quasi *- algebras

IF 0.8 3区 数学 Q2 MATHEMATICS
Giorgia Bellomonte, Bogdan Djordjević, Stefan Ivković
{"title":"On representations and topological aspects of positive maps on non-unital quasi *- algebras","authors":"Giorgia Bellomonte, Bogdan Djordjević, Stefan Ivković","doi":"10.1007/s11117-024-01079-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we provide a representation of a certain class of C*-valued positive sesquilinear and linear maps on non-unital quasi *-algebras, thus extending the results from Bellomonte (GNS-construction for positive <span>\\(C^*-\\)</span>valued sesquilinear maps on a quasi <span>\\(*-\\)</span>algebra, Mediterr. J. Math., <b>21</b> 166 (22 pp) (2024)) to the case of non-unital quasi *-algebras. Also, we illustrate our results on the concrete examples of non-unital Banach quasi *-algebras, such as the standard Hilbert module over a commutative C*-algebra, Schatten p-ideals and noncommutative <span>\\(L^2\\)</span>-spaces induced by a semifinite, nonfinite trace. As a consequence of our results, we obtain a representation of all bounded positive linear C*-valued maps on non-unital C*-algebras. We also deduce some norm inequalities for these maps. Finally, we consider a noncommutative <span>\\(L^2\\)</span>-space equipped with the topology generated by a positive sesquilinear form and we construct a topologically transitive operator on this space.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":"13 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01079-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we provide a representation of a certain class of C*-valued positive sesquilinear and linear maps on non-unital quasi *-algebras, thus extending the results from Bellomonte (GNS-construction for positive \(C^*-\)valued sesquilinear maps on a quasi \(*-\)algebra, Mediterr. J. Math., 21 166 (22 pp) (2024)) to the case of non-unital quasi *-algebras. Also, we illustrate our results on the concrete examples of non-unital Banach quasi *-algebras, such as the standard Hilbert module over a commutative C*-algebra, Schatten p-ideals and noncommutative \(L^2\)-spaces induced by a semifinite, nonfinite trace. As a consequence of our results, we obtain a representation of all bounded positive linear C*-valued maps on non-unital C*-algebras. We also deduce some norm inequalities for these maps. Finally, we consider a noncommutative \(L^2\)-space equipped with the topology generated by a positive sesquilinear form and we construct a topologically transitive operator on this space.

论非单元准*-代数上正映射的表征和拓扑问题
在本文中,我们提供了某类 C* 值的正芝麻线性和线性映射在非生命准 *-geras 上的表示,从而将 Bellomonte 的成果(GNS-construction for positive \(C^*-\)valued sesquilinear maps on a quasi \(*-\)algebra, Mediterr.J. Math., 21 166 (22 pp) (2024))的非空格准 *-代数的情况。此外,我们还在非无素巴拿赫准*-数组的具体例子中说明了我们的结果,如交换C*-代数上的标准希尔伯特模组、沙滕p-ideals和由半有限、非有限迹诱导的非(L^2\)交换空间(non-commutative \(L^2\)-spaces induced by a semifinite, nonfinite trace)。由于我们的结果,我们得到了所有有界正线性 C* 值映射在非空格 C* 代数上的表示。我们还为这些映射推导出了一些规范不等式。最后,我们考虑了一个非交换(L^2\)空间,它配备了由正芝麻线性形式产生的拓扑,我们在这个空间上构造了一个拓扑传递算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信