Giorgia Bellomonte, Bogdan Djordjević, Stefan Ivković
{"title":"On representations and topological aspects of positive maps on non-unital quasi *- algebras","authors":"Giorgia Bellomonte, Bogdan Djordjević, Stefan Ivković","doi":"10.1007/s11117-024-01079-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we provide a representation of a certain class of C*-valued positive sesquilinear and linear maps on non-unital quasi *-algebras, thus extending the results from Bellomonte (GNS-construction for positive <span>\\(C^*-\\)</span>valued sesquilinear maps on a quasi <span>\\(*-\\)</span>algebra, Mediterr. J. Math., <b>21</b> 166 (22 pp) (2024)) to the case of non-unital quasi *-algebras. Also, we illustrate our results on the concrete examples of non-unital Banach quasi *-algebras, such as the standard Hilbert module over a commutative C*-algebra, Schatten p-ideals and noncommutative <span>\\(L^2\\)</span>-spaces induced by a semifinite, nonfinite trace. As a consequence of our results, we obtain a representation of all bounded positive linear C*-valued maps on non-unital C*-algebras. We also deduce some norm inequalities for these maps. Finally, we consider a noncommutative <span>\\(L^2\\)</span>-space equipped with the topology generated by a positive sesquilinear form and we construct a topologically transitive operator on this space.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":"13 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01079-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we provide a representation of a certain class of C*-valued positive sesquilinear and linear maps on non-unital quasi *-algebras, thus extending the results from Bellomonte (GNS-construction for positive \(C^*-\)valued sesquilinear maps on a quasi \(*-\)algebra, Mediterr. J. Math., 21 166 (22 pp) (2024)) to the case of non-unital quasi *-algebras. Also, we illustrate our results on the concrete examples of non-unital Banach quasi *-algebras, such as the standard Hilbert module over a commutative C*-algebra, Schatten p-ideals and noncommutative \(L^2\)-spaces induced by a semifinite, nonfinite trace. As a consequence of our results, we obtain a representation of all bounded positive linear C*-valued maps on non-unital C*-algebras. We also deduce some norm inequalities for these maps. Finally, we consider a noncommutative \(L^2\)-space equipped with the topology generated by a positive sesquilinear form and we construct a topologically transitive operator on this space.
期刊介绍:
The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome.
The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.