{"title":"Fast no-reference deep image dehazing","authors":"Hongyi Qin, Alexander G. Belyaev","doi":"10.1007/s00138-024-01601-8","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a deep learning method for image dehazing and clarification. The main advantages of the method are high computational speed and using unpaired image data for training. The method adapts the Zero-DCE approach (Li et al. in IEEE Trans Pattern Anal Mach Intell 44(8):4225–4238, 2021) for the image dehazing problem and uses high-order curves to adjust the dynamic range of images and achieve dehazing. Training the proposed dehazing neural network does not require paired hazy and clear datasets but instead utilizes a set of loss functions, assessing the quality of dehazed images to drive the training process. Experiments on a large number of real-world hazy images demonstrate that our proposed network effectively removes haze while preserving details and enhancing brightness. Furthermore, on an affordable GPU-equipped laptop, the processing speed can reach 1000 FPS for images with 2K resolution, making it highly suitable for real-time dehazing applications.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"18 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01601-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a deep learning method for image dehazing and clarification. The main advantages of the method are high computational speed and using unpaired image data for training. The method adapts the Zero-DCE approach (Li et al. in IEEE Trans Pattern Anal Mach Intell 44(8):4225–4238, 2021) for the image dehazing problem and uses high-order curves to adjust the dynamic range of images and achieve dehazing. Training the proposed dehazing neural network does not require paired hazy and clear datasets but instead utilizes a set of loss functions, assessing the quality of dehazed images to drive the training process. Experiments on a large number of real-world hazy images demonstrate that our proposed network effectively removes haze while preserving details and enhancing brightness. Furthermore, on an affordable GPU-equipped laptop, the processing speed can reach 1000 FPS for images with 2K resolution, making it highly suitable for real-time dehazing applications.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.