{"title":"Boundedness and finite-time blow-up in a Keller–Segel chemotaxis-growth system with flux limitation","authors":"Chunmei Chen, Pan Zheng","doi":"10.1007/s00033-024-02320-w","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with a parabolic–elliptic Keller–Segel chemotaxis-growth system with flux limitation </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned} u_t&=\\nabla \\cdot ((u+1)^{m-1}\\nabla u)- \\nabla \\cdot (uf(|\\nabla v|^{2})\\nabla v)+\\lambda u-\\mu u^k,&\\quad x\\in \\Omega ,t>0,\\\\ 0&=\\Delta v-M(t)+u,&\\quad x\\in \\Omega ,t>0, \\end{aligned} \\right. \\end{aligned}$$</span><p>under homogeneous Neumann boundary conditions, where <span>\\(\\Omega \\subset {\\mathbb {R}}^N\\)</span> is a smoothly bounded domain, <span>\\(m\\in {\\mathbb {R}}\\)</span>, <span>\\(\\lambda>0, \\mu >0\\)</span>, <span>\\(k>1\\)</span>, <span>\\(M(t):=\\frac{1}{|\\Omega |} \\mathop {\\int }\\limits _{\\Omega } u(x, t) d x\\)</span>, <span>\\(f\\left( |\\nabla v|^2\\right) =(1+|\\nabla v|^2)^{-\\alpha }, \\alpha \\in {\\mathbb {R}}\\)</span>. In this framework, it is shown that when <span>\\(N\\ge 2, m+k>2, k>1, k\\ge m\\)</span> and </p><span>$$\\begin{aligned} \\alpha >\\frac{4N-(m+k)N-2}{4(N-1)}, \\end{aligned}$$</span><p>then for all nonnegative initial data, the solution is global and bounded in time. Moreover, when <span>\\(\\Omega \\subset {\\mathbb {R}}^N\\)</span> <span>\\((N\\ge 5)\\)</span> is a ball, if <span>\\(1<m<\\min \\left\\{ \\frac{2N-4}{N},1-\\frac{1}{N}+\\frac{1}{N}\\sqrt{N^2-4N+1}\\right\\} \\)</span> and the parameters <span>\\(\\alpha \\)</span> and <i>k</i> satisfy suitable conditions, there exist some initial data <span>\\(u_{0}\\)</span> such that the solution <i>u</i>(<i>x</i>, <i>t</i>) blows up at finite time <span>\\(T_{\\max }\\)</span> in <span>\\(L^{\\infty }\\)</span>-norm sense.</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02320-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with a parabolic–elliptic Keller–Segel chemotaxis-growth system with flux limitation
under homogeneous Neumann boundary conditions, where \(\Omega \subset {\mathbb {R}}^N\) is a smoothly bounded domain, \(m\in {\mathbb {R}}\), \(\lambda>0, \mu >0\), \(k>1\), \(M(t):=\frac{1}{|\Omega |} \mathop {\int }\limits _{\Omega } u(x, t) d x\), \(f\left( |\nabla v|^2\right) =(1+|\nabla v|^2)^{-\alpha }, \alpha \in {\mathbb {R}}\). In this framework, it is shown that when \(N\ge 2, m+k>2, k>1, k\ge m\) and
then for all nonnegative initial data, the solution is global and bounded in time. Moreover, when \(\Omega \subset {\mathbb {R}}^N\)\((N\ge 5)\) is a ball, if \(1<m<\min \left\{ \frac{2N-4}{N},1-\frac{1}{N}+\frac{1}{N}\sqrt{N^2-4N+1}\right\} \) and the parameters \(\alpha \) and k satisfy suitable conditions, there exist some initial data \(u_{0}\) such that the solution u(x, t) blows up at finite time \(T_{\max }\) in \(L^{\infty }\)-norm sense.