Boundedness and finite-time blow-up in a Keller–Segel chemotaxis-growth system with flux limitation

Chunmei Chen, Pan Zheng
{"title":"Boundedness and finite-time blow-up in a Keller–Segel chemotaxis-growth system with flux limitation","authors":"Chunmei Chen, Pan Zheng","doi":"10.1007/s00033-024-02320-w","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with a parabolic–elliptic Keller–Segel chemotaxis-growth system with flux limitation </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned} u_t&amp;=\\nabla \\cdot ((u+1)^{m-1}\\nabla u)- \\nabla \\cdot (uf(|\\nabla v|^{2})\\nabla v)+\\lambda u-\\mu u^k,&amp;\\quad x\\in \\Omega ,t&gt;0,\\\\ 0&amp;=\\Delta v-M(t)+u,&amp;\\quad x\\in \\Omega ,t&gt;0, \\end{aligned} \\right. \\end{aligned}$$</span><p>under homogeneous Neumann boundary conditions, where <span>\\(\\Omega \\subset {\\mathbb {R}}^N\\)</span> is a smoothly bounded domain, <span>\\(m\\in {\\mathbb {R}}\\)</span>, <span>\\(\\lambda&gt;0, \\mu &gt;0\\)</span>, <span>\\(k&gt;1\\)</span>, <span>\\(M(t):=\\frac{1}{|\\Omega |} \\mathop {\\int }\\limits _{\\Omega } u(x, t) d x\\)</span>, <span>\\(f\\left( |\\nabla v|^2\\right) =(1+|\\nabla v|^2)^{-\\alpha }, \\alpha \\in {\\mathbb {R}}\\)</span>. In this framework, it is shown that when <span>\\(N\\ge 2, m+k&gt;2, k&gt;1, k\\ge m\\)</span> and </p><span>$$\\begin{aligned} \\alpha &gt;\\frac{4N-(m+k)N-2}{4(N-1)}, \\end{aligned}$$</span><p>then for all nonnegative initial data, the solution is global and bounded in time. Moreover, when <span>\\(\\Omega \\subset {\\mathbb {R}}^N\\)</span> <span>\\((N\\ge 5)\\)</span> is a ball, if <span>\\(1&lt;m&lt;\\min \\left\\{ \\frac{2N-4}{N},1-\\frac{1}{N}+\\frac{1}{N}\\sqrt{N^2-4N+1}\\right\\} \\)</span> and the parameters <span>\\(\\alpha \\)</span> and <i>k</i> satisfy suitable conditions, there exist some initial data <span>\\(u_{0}\\)</span> such that the solution <i>u</i>(<i>x</i>, <i>t</i>) blows up at finite time <span>\\(T_{\\max }\\)</span> in <span>\\(L^{\\infty }\\)</span>-norm sense.</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02320-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a parabolic–elliptic Keller–Segel chemotaxis-growth system with flux limitation

$$\begin{aligned} \left\{ \begin{aligned} u_t&=\nabla \cdot ((u+1)^{m-1}\nabla u)- \nabla \cdot (uf(|\nabla v|^{2})\nabla v)+\lambda u-\mu u^k,&\quad x\in \Omega ,t>0,\\ 0&=\Delta v-M(t)+u,&\quad x\in \Omega ,t>0, \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions, where \(\Omega \subset {\mathbb {R}}^N\) is a smoothly bounded domain, \(m\in {\mathbb {R}}\), \(\lambda>0, \mu >0\), \(k>1\), \(M(t):=\frac{1}{|\Omega |} \mathop {\int }\limits _{\Omega } u(x, t) d x\), \(f\left( |\nabla v|^2\right) =(1+|\nabla v|^2)^{-\alpha }, \alpha \in {\mathbb {R}}\). In this framework, it is shown that when \(N\ge 2, m+k>2, k>1, k\ge m\) and

$$\begin{aligned} \alpha >\frac{4N-(m+k)N-2}{4(N-1)}, \end{aligned}$$

then for all nonnegative initial data, the solution is global and bounded in time. Moreover, when \(\Omega \subset {\mathbb {R}}^N\) \((N\ge 5)\) is a ball, if \(1<m<\min \left\{ \frac{2N-4}{N},1-\frac{1}{N}+\frac{1}{N}\sqrt{N^2-4N+1}\right\} \) and the parameters \(\alpha \) and k satisfy suitable conditions, there exist some initial data \(u_{0}\) such that the solution u(xt) blows up at finite time \(T_{\max }\) in \(L^{\infty }\)-norm sense.

具有流量限制的凯勒-西格尔趋化-生长系统中的有界性和有限时间膨胀
本文讨论的是一个抛物线-椭圆形的凯勒-西格尔趋化-生长系统,该系统具有通量限制 $$\begin{aligned}\u_t&=\nabla \cdot ((u+1)^{m-1}\nabla u)-\nabla \cdot (uf(|\nabla v|^{2})\nabla v)+\lambda u-\mu u^k,&;\quad x\in \Omega ,t>0,\0&=\Delta v-M(t)+u,&\quad x\in \Omega ,t>0, end{aligned}.\右边\end{aligned}$$ under homogeneous Neumann boundary conditions, where \(\Omega \subset {\mathbb {R}}^N\) is a smoothly bounded domain, \(m\in {\mathbb {R}}\), \(\lambda>0, \mu >0\), \(k>1\), \(M(t):=\frac{1}{|\Omega |}.\u(x, t) d x\),\(f\left( |\nabla v|^2\right) =(1+|\nabla v|^2)^{-\alpha }, \alpha \in {\mathbb {R}}\).在这个框架下,可以证明当 \(N\ge 2, m+k>2, k>1, k\ge m\) 和 $$\begin{aligned} 时,"α "和 "α "的值是相同的。\α >frac{4N-(m+k)N-2}{4(N-1)},end{aligned}$$那么对于所有非负的初始数据,解是全局的并且在时间上是有界的。此外,当(Omega \subset {\mathbb {R}}^N\) \((N\ge 5)\)是一个球时,如果(1<m<\min \left\{ \frac{2N-4}{N},1-\frac{1}{N}+\frac{1}{N}\sqrt{N^2-4N+1}\right}\如果参数 \(α \) 和 k 满足合适的条件,那么就存在一些初始数据 \(u_{0}\) 使得解 u(x, t) 在有限时间 \(T_{\max }\) 在 \(L^{\infty })-norm意义上爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信