Mitigating RC-Delay Induced Accuracy Loss in Analog In-Memory Computing: A Non-Compromising Approach

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Saike Zhu;Cimang Lu;Xiang Qiu;Shifan Gao;Xiang Ding;Youngseo Kim;Yi Zhao
{"title":"Mitigating RC-Delay Induced Accuracy Loss in Analog In-Memory Computing: A Non-Compromising Approach","authors":"Saike Zhu;Cimang Lu;Xiang Qiu;Shifan Gao;Xiang Ding;Youngseo Kim;Yi Zhao","doi":"10.1109/TCE.2024.3445341","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) has proliferated ubiquitous information exchange between the physical and cyber worlds through consumer electronics, with a focus on moving computing power to edge terminals. Computing-in-memory (CIM) technology has emerged as a competitive candidate for edge computing because of its low power consumption and high performance. In order to achieve accurate inference for neural network models, it is crucial to comprehend the source of errors in the CIM-based analog computing paradigm. In this work, we analyzed the impact of random noises and output stabling times on the Programmable Linear Random Access Memory (PLRAM)-based CIM chip. Experimental results show that the impact of random noise is negligible. The output stabling time can be treated as RC delay, which is related to the weight distribution. We proposed a weight reordering strategy to achieve better performance without sacrificing computation accuracy. Experiments with a commercial 11-keyword speech recognition model show a 74.4% runtime reduction while maintaining a 95.6% classification accuracy.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 4","pages":"7544-7550"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638765/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) has proliferated ubiquitous information exchange between the physical and cyber worlds through consumer electronics, with a focus on moving computing power to edge terminals. Computing-in-memory (CIM) technology has emerged as a competitive candidate for edge computing because of its low power consumption and high performance. In order to achieve accurate inference for neural network models, it is crucial to comprehend the source of errors in the CIM-based analog computing paradigm. In this work, we analyzed the impact of random noises and output stabling times on the Programmable Linear Random Access Memory (PLRAM)-based CIM chip. Experimental results show that the impact of random noise is negligible. The output stabling time can be treated as RC delay, which is related to the weight distribution. We proposed a weight reordering strategy to achieve better performance without sacrificing computation accuracy. Experiments with a commercial 11-keyword speech recognition model show a 74.4% runtime reduction while maintaining a 95.6% classification accuracy.
减轻模拟内存计算中 RC 延迟引起的精度损失:不妥协的方法
物联网(IoT)通过消费电子产品在物理世界和网络世界之间增加了无处不在的信息交换,重点是将计算能力转移到边缘终端。内存计算(CIM)技术由于其低功耗和高性能而成为边缘计算的竞争对象。为了实现对神经网络模型的准确推理,了解基于cim的模拟计算范式中的误差来源至关重要。在这项工作中,我们分析了随机噪声和输出稳定时间对基于可编程线性随机存取存储器(PLRAM)的CIM芯片的影响。实验结果表明,随机噪声的影响可以忽略不计。输出稳定时间可以看作RC延迟,RC延迟与权重分布有关。为了在不牺牲计算精度的前提下获得更好的性能,我们提出了一种权重重排序策略。使用11个关键字的商业语音识别模型进行的实验表明,在保持95.6%的分类准确率的同时,运行时间减少了74.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信