A Multiple Random Scan Strategy for Latent Space Models

Antonio Peruzzi, Roberto Casarin
{"title":"A Multiple Random Scan Strategy for Latent Space Models","authors":"Antonio Peruzzi, Roberto Casarin","doi":"arxiv-2408.11725","DOIUrl":null,"url":null,"abstract":"Latent Space (LS) network models project the nodes of a network on a\n$d$-dimensional latent space to achieve dimensionality reduction of the network\nwhile preserving its relevant features. Inference is often carried out within a\nMarkov Chain Monte Carlo (MCMC) framework. Nonetheless, it is well-known that\nthe computational time for this set of models increases quadratically with the\nnumber of nodes. In this work, we build on the Random-Scan (RS) approach to\npropose an MCMC strategy that alleviates the computational burden for LS models\nwhile maintaining the benefits of a general-purpose technique. We call this\nnovel strategy Multiple RS (MRS). This strategy is effective in reducing the\ncomputational cost by a factor without severe consequences on the MCMC draws.\nMoreover, we introduce a novel adaptation strategy that consists of a\nprobabilistic update of the set of latent coordinates of each node. Our\nAdaptive MRS adapts the acceptance rate of the Metropolis step to adjust the\nprobability of updating the latent coordinates. We show via simulation that the\nAdaptive MRS approach performs better than MRS in terms of mixing. Finally, we\napply our algorithm to a multi-layer temporal LS model and show how our\nadaptive strategy may be beneficial to empirical applications.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Latent Space (LS) network models project the nodes of a network on a $d$-dimensional latent space to achieve dimensionality reduction of the network while preserving its relevant features. Inference is often carried out within a Markov Chain Monte Carlo (MCMC) framework. Nonetheless, it is well-known that the computational time for this set of models increases quadratically with the number of nodes. In this work, we build on the Random-Scan (RS) approach to propose an MCMC strategy that alleviates the computational burden for LS models while maintaining the benefits of a general-purpose technique. We call this novel strategy Multiple RS (MRS). This strategy is effective in reducing the computational cost by a factor without severe consequences on the MCMC draws. Moreover, we introduce a novel adaptation strategy that consists of a probabilistic update of the set of latent coordinates of each node. Our Adaptive MRS adapts the acceptance rate of the Metropolis step to adjust the probability of updating the latent coordinates. We show via simulation that the Adaptive MRS approach performs better than MRS in terms of mixing. Finally, we apply our algorithm to a multi-layer temporal LS model and show how our adaptive strategy may be beneficial to empirical applications.
潜空间模型的多重随机扫描策略
潜空间(LS)网络模型将网络节点投影到一个 $d$ 维的潜空间上,以实现网络的降维,同时保留其相关特征。推理通常在马尔可夫链蒙特卡罗(MCMC)框架内进行。然而,众所周知,这组模型的计算时间会随着节点数量的增加而呈二次曲线增长。在这项工作中,我们以随机扫描(RS)方法为基础,提出了一种 MCMC 策略,既减轻了 LS 模型的计算负担,又保持了通用技术的优点。我们称这种新颖的策略为多重 RS(MRS)。此外,我们还引入了一种新颖的适应策略,它包括对每个节点的潜在坐标集进行概率更新。我们的自适应 MRS 调整 Metropolis 步骤的接受率,以调整更新潜在坐标的概率。我们通过仿真证明,自适应 MRS 方法在混合方面的表现优于 MRS。最后,我们将算法应用于多层时态 LS 模型,并展示了我们的自适应策略如何有益于经验应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信